Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 63–73 | Cite as

Synthesis of spiro-fused heterocycles under aerobic conditions by using polymer gel-entrapped catalyst

  • Audumbar Patil
  • Shital Shinde
  • Gajanan Rashinkar
  • Rajashri SalunkheEmail author
Article
  • 36 Downloads

Abstract

An expedient synthesis of spiro-fused heterocycles from multi-component reaction of urea, aryl aldehydes and Meldrum’s or barbituric acid by using polymer gel-entrapped catalyst under aerobic conditions at ambient temperature is reported. The developed protocol is simple, green, atom-economical and includes mild reaction conditions, does not involve tedious workup or purification procedure, avoids hazardous reagents/by-products and results in near-quantitative yields. The polymer gel-entrapped catalyst could be reused seven times without significant change in the catalytic activity.

Graphic abstract

Keywords

Aldehydes Gel-entrapped ZnCl2 Modified Biginelli reaction Spiro-fused heterocycles Recyclability 

Notes

Acknowledgements

We gratefully acknowledge the Department of Chemistry, Shivaji University, Kolhapur, for providing research facility.

References

  1. 1.
    I. Ugi, A. Dömling, W. Horl, Endeavour 18, 115 (1994)CrossRefGoogle Scholar
  2. 2.
    L.F. Tietze, A. Modi, Med. Res. Rev. 20, 304 (2000)CrossRefGoogle Scholar
  3. 3.
    I. Ugi, A. Dömling, B. Werner, J. Heterocycl. Chem. 37, 647 (2000)CrossRefGoogle Scholar
  4. 4.
    R.V.A. Orru, M. de Greef, Synthesis 10, 1471 (2003)CrossRefGoogle Scholar
  5. 5.
    D.J. Ramón, M. Yus, Angew. Chem. Int. Ed. Engl. 44, 1602 (2005)CrossRefGoogle Scholar
  6. 6.
    D.B. Ramachary, C.F. Barbas III, Chem. Eur. J. 10, 5323 (2004)CrossRefGoogle Scholar
  7. 7.
    S.E. Denmark, Y. Fan, J. Am. Chem. Soc. 125, 7825 (2003)CrossRefGoogle Scholar
  8. 8.
    P.R. Andreana, C.C. Liu, S.L. Schreiber, Org. Lett. 6, 4231 (2004)CrossRefGoogle Scholar
  9. 9.
    P.G. Cozzi, E. Rivalta, Angew. Chem. Int. Ed. 44, 3600 (2005)CrossRefGoogle Scholar
  10. 10.
    R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, T.A. Keating, Acc. Chem. Res. 29, 123 (1996)CrossRefGoogle Scholar
  11. 11.
    M.D. Burke, S.L. Schreiber, Angew. Chem. Int. Ed. Engl. 43, 46 (2004)CrossRefGoogle Scholar
  12. 12.
    P. Biginelli, P. Gazz, Chim. Ital. 23, 360 (1893)Google Scholar
  13. 13.
    C.O. Kappe, Acc. Chem. Res. 33, 879 (2000)CrossRefGoogle Scholar
  14. 14.
    M.J. Lusch, J.A. Tallarico, Org. Lett. 6, 3237 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Sannigrahi, Tetrahedron 55, 9007 (1999)CrossRefGoogle Scholar
  16. 16.
    N. Srivastav, A Mittal, A. Kumar, J. Chem. Soc., Chem. Commun. 493 (1992)Google Scholar
  17. 17.
    C.O. Kappe, S.F. Falsone, Synlett 7, 718 (1998)CrossRefGoogle Scholar
  18. 18.
    J. Lu, Y. Bai, Z. Wang, B. Yang, H. Ma, Tetrahedron Lett. 41, 9075 (2000)CrossRefGoogle Scholar
  19. 19.
    J.S. Yadav, B.V.S. Reddy, R. Srinivas, C. Venugopal, T. Ramalingam, Synthesis 9, 1341 (2001)CrossRefGoogle Scholar
  20. 20.
    A.M. Astaraki, A. Bazgir, JACR 8, 67 (2009)Google Scholar
  21. 21.
    P. Gupta, S. Gupta, A. Sachar, D. Kour, J. Singh, R.L. Sharma, J. Heterocycl. Chem. 47, 324 (2010)CrossRefGoogle Scholar
  22. 22.
    L.R. Devi, O.M. Singh, Indian J. Chem. 51B, 1426 (2012)Google Scholar
  23. 23.
    S.R. Jetti, D. Verma, S. Jain, J. Chem. Pharm. Res. 4, 2373 (2012)Google Scholar
  24. 24.
    K. Ishihara, in Lewis Acids in Organic Synthesis, ed. by H. Yamamoto (Wiley-VCH, Weinheim, 2000), p. 89CrossRefGoogle Scholar
  25. 25.
    S. Kobayashi, K. Manabe, Acc. Chem. Res. 35, 209 (2002)CrossRefGoogle Scholar
  26. 26.
    K. Manabe, Y. Mori, T. Wakabayashi, S. Nagayama, S. Kobayashi, J. Am. Chem. Soc. 122, 7202 (2002)CrossRefGoogle Scholar
  27. 27.
    S. Kobayashi, Pure Appl. Chem. 70, 1019 (1998)CrossRefGoogle Scholar
  28. 28.
    S. Hu, Z. Zhang, J. Song, Y. Zhou, B. Han, Green Chem. 11, 1746 (2009)CrossRefGoogle Scholar
  29. 29.
    H.E. Lanman, R.-V. Nguyen, X. Yao, T.-H. Chan, C.-J. Li, J. Mol. Catal. A Chem. 279, 218 (2008)CrossRefGoogle Scholar
  30. 30.
    A.G. Posternak, R.Y. Garlyauskayte, L.M. Yagupolskii, Tetrahedron Lett. 50, 446 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Kobayashi, K. Manabe, Pure Appl. Chem. 72, 1373 (2000)CrossRefGoogle Scholar
  32. 32.
    A. Patil, A. Mane, S. Kamat, T. Lohar, R. Salunkhe, Res. Chem. Intermed. 45, 3441 (2019)CrossRefGoogle Scholar
  33. 33.
    A. Patil, R. Salunkhe, Res. Chem. Intermed. 44, 3337 (2018)CrossRefGoogle Scholar
  34. 34.
    T. Lohar, A. Kumbhar, A. Patil, S. Kamat, R. Salunkhe, Res. Chem. Intermed. 45, 1639 (2019)CrossRefGoogle Scholar
  35. 35.
    A.H. Mane, A.D. Patil, S.R. Kamat, R.S. Salunkhe, ChemistrySelect 3, 6454 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Shaabani, A. Bazgir, Tetrahedron Lett. 45, 2575 (2004)CrossRefGoogle Scholar
  37. 37.
    F. Fringuelli, F. Pizzo, L. Vaccaro, Tetrahedron Lett. 42, 1131 (2001)CrossRefGoogle Scholar
  38. 38.
    T. Deng, X. Cui, Y. Qi, Y. Wang, X. Hou, Y. Zhu, Chem. Commun. 48, 5494 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Audumbar Patil
    • 1
  • Shital Shinde
    • 1
  • Gajanan Rashinkar
    • 1
  • Rajashri Salunkhe
    • 1
    Email author
  1. 1.Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations