Research on Chemical Intermediates

, Volume 46, Issue 1, pp 15–31 | Cite as

One-step synthesis of Ag6Si2O7/AgCl heterojunction composite with extraordinary visible-light photocatalytic activity and stability

  • Jibo Qin
  • Weihua CuiEmail author
  • Chuanping Feng
  • Nan ChenEmail author
  • Miao Li


In this paper, a Z-scheme Ag6Si2O7/AgCl heterojunction composite was successfully constructed via a one-step co-precipitation method and investigated as a novel photocatalyst for the first time. The as-prepared samples were thoroughly characterized by the FESEM, HRTEM, XRD, FTIR, DRS and XPS. The photocatalytic properties of the obtained samples were evaluated by monitoring the degradation efficiency of refractory organic pollutants (methyl orange (MO), rhodamine B (RhB) and phenol) and photocurrent intensity under visible-light irradiation. The Ag6Si2O7/AgCl photocatalysts showed drastically enhanced photocatalysis performance compared to the Ag6Si2O7 and AgCl. In particular, the 1/72 Ag6Si2O7/AgCl composite showed the highest photocatalytic activity, exhibiting a nearly complete degradation of 10 mg/L MO and 20 mg/L phenol within only 40 and 180 min, respectively. The enhancement of photocatalytic activity of the Ag6Si2O7/AgCl could be mainly attributed to (1) strong visible-light absorption capacity; (2) effective photogenerated charge separation and transfer through the coupled heterojunction interfaces of Ag6Si2O7 and AgCl. Moreover, a possible Z-scheme charge transfer mechanism was proposed based on the experimentation and the theoretical calculation. During the photocatalytic reaction, the Ag6Si2O7/AgCl photocatalyst exhibited high mineralization ability for organic pollutants, indicating that it had great practical value in the field of water treatment.


Z-scheme heterojunction Ag6Si2O7/AgCl Phenol and MO degradation Stability 



The authors acknowledge financial support from the National Natural Science Foundation of China (NSFC) (No. 21876159) and the Fundamental Research Funds for the Central Universities (No. 2652018181).


  1. 1.
    H. Guo, C.G. Niu, X.J. Wen, L. Zhang, C. Liang, X.G. Zhang, D.L. Guan, N. Tang, G.M. Zeng, J. Colloid Interface Sci. 513, 852 (2017)PubMedGoogle Scholar
  2. 2.
    Z. Men, P. Wang, Q. Cao, Shandong Chem. Ind. 46, 169 (2017)Google Scholar
  3. 3.
    N. Mohaghegh, E. Rahimi, M.R. Gholami, Mater. Sci. Semicond. Process. 39, 506 (2015)Google Scholar
  4. 4.
    A. Sudhaik, P. Raizada, P. Shandilya, D.-Y. Jeong, J.-H. Lim, P. Singh, J. Ind. Eng. Chem. 67, 28 (2018)Google Scholar
  5. 5.
    A. Sudhaik, P. Raizada, P. Shandilya, P. Singh, J. Environ. Chem. Eng. 6, 3874 (2018)Google Scholar
  6. 6.
    P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Arab. J. Chem. (2018). CrossRefGoogle Scholar
  7. 7.
    V. Hasija, P. Raizada, A. Sudhaik, K. Sharma, A. Kumar, P. Singh, S.B. Jonnalagadda, V.K. Thakur, Appl. Mater. Today 15, 494 (2019)Google Scholar
  8. 8.
    J. Kim, C.W. Lee, W. Choi, Environ. Sci. Technol. 44, 6849 (2010)PubMedGoogle Scholar
  9. 9.
    Y. Wang, D. Li, Q. Ma, J. Tian, Y. Song, X. Xi, X. Dong, W. Yu, J. Wang, G. Liu, RSC Adv. 8, 11051 (2018)Google Scholar
  10. 10.
    M.A. Hernández-Carrillo, R. Torres-Ricárdez, M.F. García-Mendoza, E. Ramírez-Morales, L. Rojas-Blanco, L.L. Díaz-Flores, G.E. Sepúlveda-Palacios, F. Paraguay-Delgado, G. Pérez-Hernández, Catal. Today (2018). CrossRefGoogle Scholar
  11. 11.
    H. Yin, K. Yu, C. Song, R. Huang, Z. Zhu, ACS Appl. Mater. Interfaces 6, 14851 (2014)PubMedGoogle Scholar
  12. 12.
    Y. Li, Z. Hu, S. Liu, X. Duan, B. Wang, React. Kinet. Mech. Catal. 112, 559 (2014)Google Scholar
  13. 13.
    B. Ma, Y. Wang, X. Tong, X. Guo, Z. Zheng, X. Guo, Catal. Sci. Technol. 7, 2805 (2017)Google Scholar
  14. 14.
    X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li, J. Phys. Chem. C 114, 1963 (2010)Google Scholar
  15. 15.
    L. Ai, C. Zhang, J. Jiang, Appl. Catal. B Environ. s142–143, 744 (2013)Google Scholar
  16. 16.
    G. Dai, J. Yu, G. Liu, J. Phys. Chem. C 116, 15519 (2012)Google Scholar
  17. 17.
    Y. Liu, H. Yu, M. Cai, J. Sun, Catal. Commun. 26, 63 (2012)Google Scholar
  18. 18.
    H. Tang, Y. Wang, D. Zhang, K. Wu, H. Huang, J. Mater. Sci. Mater. Electron. 27, 6955 (2016)Google Scholar
  19. 19.
    Z. Chen, W. Wang, Z. Zhang, X. Fang, J. Phys. Chem. C 117, 19346 (2013)Google Scholar
  20. 20.
    D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Nanoscale 4, 5431 (2012)PubMedGoogle Scholar
  21. 21.
    J. Guo, H. Shi, X. Huang, H. Shi, Z. An, J. Colloid Interface Sci. 515, 10 (2018)PubMedGoogle Scholar
  22. 22.
    Y.A. Wu, L. Li, Z. Li, A. Kinaci, M.K. Chan, Y. Sun, J.R. Guest, I. Mcnulty, T. Rajh, Y. Liu, ACS Nano 10, 3738 (2016)PubMedGoogle Scholar
  23. 23.
    Y. Xie, Y. Dai, X. Yuan, L. Jiang, L. Zhou, Z. Wu, J. Zhang, H. Wang, T. Xiong, J. Colloid Interface Sci. 530 (2018)Google Scholar
  24. 24.
    L. Ju, P. Wu, Q. Yang, Z. Ahmed, N. Zhu, Appl. Catal. B Environ. 224, 159 (2018)Google Scholar
  25. 25.
    J. Yu, G. Dai, B. Huang, J. Phys. Chem. C 113, 16394 (2009)Google Scholar
  26. 26.
    Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, L. Liu, J. Alloys Compd. 509, 3286 (2011)Google Scholar
  27. 27.
    Y. Chen, G. Zhu, Y. Liu, J. Gao, C. Wang, R. Zhu, P. Liu, J. Mater. Sci. Mater. Electron. 28, 2859 (2017)Google Scholar
  28. 28.
    Y. Liang, S. Lin, L. Li, J. Hu, W. Cui, Appl. Catal. B 164, 192 (2015)Google Scholar
  29. 29.
    Z. Lou, B. Huang, Z. Wang, X. Ma, R. Zhang, X. Zhang, X. Qin, Y. Dai, M.H. Whangbo, ChemInform 45, 3873 (2015)Google Scholar
  30. 30.
    J. Qin, N. Chen, C. Feng, H. Chen, M. Li, Y. Gao, Catal. Lett. 148, 2777 (2018)Google Scholar
  31. 31.
    H. Chen, N. Chen, C. Feng, Y. Gao, J. Colloid Interface Sci. 515, 119 (2018)PubMedGoogle Scholar
  32. 32.
    M. Zhu, P. Chen, M. Liu, J. Mater. Chem. 22, 21487 (2012)Google Scholar
  33. 33.
    B. Golzad-Nonakaran, A. Habibi-Yangjeh, Adv. Powder Technol. 27, 1427 (2016)Google Scholar
  34. 34.
    I.P. Sahu, D.P. Bisen, N. Brahme, Phys. Procedia 76, 80 (2015)Google Scholar
  35. 35.
    S.F. Yang, C.G. Niu, D.W. Huang, H. Zhang, G.M. Zeng, J. Colloid Interface Sci. 505, 96 (2017)PubMedGoogle Scholar
  36. 36.
    Y. Liang, S. Lin, L. Liu, J. Hu, W. Cui, Appl. Catal. B 164, 192 (2015)Google Scholar
  37. 37.
    Y. Wang, C.G. Niu, L. Wang, Y. Wang, X.G. Zhang, G.M. Zeng, RSC Adv. 6, 47873 (2016)Google Scholar
  38. 38.
    X. Li, S. Fang, G. Lei, C. Han, Q. Ping, W. Liu, Appl. Catal. B Environ. s176–177, 62 (2015)Google Scholar
  39. 39.
    S. Jafari, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490, 478 (2017)PubMedGoogle Scholar
  40. 40.
    Y. Gong, X. Quan, H. Yu, S. Chen, Appl. Catal. B 219, 439 (2017)Google Scholar
  41. 41.
    J. Wang, Y. Yu, L. Zhang, Appl. Catal. B 136–137, 112 (2013)Google Scholar
  42. 42.
    P. Raizada, P. Singh, A. Kumar, G. Sharma, B. Pare, S.B. Jonnalagadda, P. Thakur, Appl. Catal. A 486, 159 (2014)Google Scholar
  43. 43.
    P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei, A.K. Saini, P. Singh, J. Clean. Prod. 203, 386 (2018)Google Scholar
  44. 44.
    P. Shandilya, D. Mittal, A. Sudhaik, M. Soni, P. Raizada, A.K. Saini, P. Singh, Sep. Purif. Technol. 210, 804 (2019)Google Scholar
  45. 45.
    P. Shandilya, D. Mittal, M. Soni, P. Raizada, J.-H. Lim, D.Y. Jeong, R.P. Dewedi, A.K. Saini, P. Singh, J. Taiwan Inst. Chem. Eng. 93, 528 (2018)Google Scholar
  46. 46.
    Y. Zhang, L. Wang, X. Kong, H. Jiang, F. Zhang, J. Shi, J. Colloid Interface Sci. 522, 29 (2018)PubMedGoogle Scholar
  47. 47.
    J. Qin, N. Chen, C. Feng, H. Chen, Z. Feng, Y. Gao, Z. Zhang, Catal. Lett. 149, 891 (2019)Google Scholar
  48. 48.
    L. Jing, Y. Xu, S. Huang, M. Xie, M. He, H. Xu, H. Li, Q. Zhang, Appl. Catal. B 199, 11 (2016)Google Scholar
  49. 49.
    Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M. Huo, Appl. Catal. B 142–143, 828 (2013)Google Scholar
  50. 50.
    M. Xu, L. Han, S. Dong, ACS Appl. Mater. Interfaces 5, 12533 (2013)PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental EvolutionChina University of Geosciences (Beijing)BeijingPeople’s Republic of China
  2. 2.School of EnvironmentTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations