Effect of cobalt metal loading on Fischer–Tropsch synthesis activities over Co/γ-Al2O3 catalysts: CO conversion, C5+ productivity, and α value

  • Jung-Il YangEmail author
  • Chang Hyun KoEmail author


This study investigates the effect of cobalt loading (5–20 wt% Co) on the physical properties of the alumina support and cobalt particle size of Co/γ-Al2O3 catalysts for Fischer–Tropsch synthesis (FTS) reaction (T = 210 °C (set), P = 20 bar, H2/CO = 2). To characterize the catalysts and correlate these characteristics with their catalytic activities in FTS, N2 adsorption, inductively coupled plasma, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) studies were conducted. N2 adsorption and XRD analyses showed that as the cobalt loading was increased up to 15 wt%, the number of cobalt oxide particles increased by the direct interaction between cobalt oxide and the alumina support surface, but that when the cobalt loading was further increased to 20 wt%, the particle size of the cobalt oxide increased abruptly due to the additional cobalt loading on the previously loaded cobalt oxide. These physical properties of the supported cobalt catalysts were attributed to the pore structure of the alumina support. From the TEM micrographs, the size of cobalt particles was roughly estimated to increase from 20 to 50 nm at a cobalt loading up to 15 wt% Co/γ-Al2O3 to 70–100 nm at 20 wt% cobalt loading. For the 5–15 wt% Co/γ-Al2O3 catalysts, CO conversion and C5+ liquid oil productivity increased with increasing cobalt loading because they were strongly proportional to the number of cobalt particle active sites. However, the 20 wt% Co/γ-Al2O3 catalyst showed the highest value of α because the larger cobalt particles increased the opportunity for chain growth. The XPS data also supported the greater reducibility of the cobalt species in 20 wt% Co/γ-Al2O3 and hence its larger size compared to that at low cobalt loading.


Fischer–Tropsch synthesis Co/γ-Al2O3 Cobalt loading CO conversion and C5+ liquid oil productivity α value 



This work was supported by the Research and Development Program of the Korea Institute of Energy Research (KIER) (No. B9-2442-05).


  1. 1.
    W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, A.Y. Khodakov, J. Catal. 252, 215 (2007)CrossRefGoogle Scholar
  2. 2.
    J.H. Yang, H.K. Kim, D.H. Chun, H.T. Lee, J.C. Hong, H. Jung, J.I. Yang, Fuel Process. Technol. 91, 285 (2010)CrossRefGoogle Scholar
  3. 3.
    M.H. Rafiq, H.A. Jakobsen, R. Schmid, J.E. Hustad, Fuel Process. Technol. 92, 893 (2011)CrossRefGoogle Scholar
  4. 4.
    M.E. Dry, Catal. Today 71, 227 (2002)CrossRefGoogle Scholar
  5. 5.
    I. Wender, Y. Zhang, L. Hou, J. Tierney, CFFS Annual Meeting, Roanoke, West Virginia, Aug. 1–4, 2004Google Scholar
  6. 6.
    H. Jung, J.I. Yang, J.H. Yang, H.T. Lee, D.H. Chun, H.J. Kim, Fuel Process. Technol. 91, 1839 (2010)CrossRefGoogle Scholar
  7. 7.
    C.G. Visconti, E. Tronconi, L. Lietti, P. Forzatti, S. Rossini, R. Zennaro, Topics Catal. 54, 786 (2011)CrossRefGoogle Scholar
  8. 8.
    R.L. Espinoza, Gas to Liquids (GTL).
  9. 9.
    H. Schulz, Appl. Catal. A: Gen. 186, 3 (1999)CrossRefGoogle Scholar
  10. 10.
    A. Forbes, Gas to Liquids 2007, London, Oct. 30–31, 2007Google Scholar
  11. 11.
    R. Guettel, U. Kunz, T. Turek, Chem. Eng. Technol. 31, 746 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Martinez, C. Lopez, F. Marquez, I. Diaz, J. Catal. 220, 486 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Storsœter, B. Totdal, J.C. Walmsley, B.S. Tanem, A. Holmen, J. Catal. 236, 139 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Barbier, A. Tuel, I. Arcon, A. Kodre, G.A. Martin, J. Catal. 200, 106 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Blanchard, H. Derule, P. Canesson, Catal. Lett. 2, 319 (1989)CrossRefGoogle Scholar
  16. 16.
    E. Iglesia, S.L. Soled, J.E. Baumgartner, S.C. Reyes, J. Catal. 153, 108 (1995)CrossRefGoogle Scholar
  17. 17.
    G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet, B.H. Davis, Appl. Catal. A: Gen. 233, 263 (2002)CrossRefGoogle Scholar
  18. 18.
    G.L. Bezemer, P.B. Radstake, U. Falke, H. Oosterbeek, H.P.C.E. Kuipers, A.J. van Dillen, K.P. de Jong, J. Catal. 237, 152 (2006)CrossRefGoogle Scholar
  19. 19.
    P.J. van Berge, J. van de Loosdrecht, S. barradas, A.M. van der Kraan, Catal. Today 58, 321 (2000)CrossRefGoogle Scholar
  20. 20.
    G. Jacobs, T.K. Das, P.M. Patterson, J. Li, L. Sanchez, B.H. Davis, Appl. Catal. A: Gen. 247, 335 (2003)CrossRefGoogle Scholar
  21. 21.
    G. Jacobs, P.M. Patterson, T.K. Das, M. Luo, B.H. Davis, Appl. Catal. A: Gen. 270, 65 (2004)CrossRefGoogle Scholar
  22. 22.
    J. van de Loosdrecht, B. Balzhinimaev, J.-A. Dalmon, J.W. Niemantsverdriet, S.V. Tsybulya, A.M. Saib, P.J. van Berge, J.L. Visagie, Catal. Today 123, 293 (2007)CrossRefGoogle Scholar
  23. 23.
    D.E. Sparks, G. Jacobs, M.K. Gnanamani, V.R.R. Pendyala, W. Ma, J. Kang, W.D. Shafer, R.A. Keogh, U.M. Graham, P. Gao, B.H. Davis, Catal. Today 215, 67 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Farzanfar, A.R. Revani, Res. Chem. Intermed. 41, 8975 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Hajjar, M.D. Rad, S. Soltanli, Res. Chem. Intermed. 43, 1341 (2017)CrossRefGoogle Scholar
  26. 26.
    J.I. Yang, J.H. Yang, H.J. Kim, H. Jung, D.H. Chun, H.T. Lee, Fuel 89, 237 (2010)CrossRefGoogle Scholar
  27. 27.
    E. Iglesia, Appl. Catal. A: Gen. 161, 59 (1997)CrossRefGoogle Scholar
  28. 28.
    H.J. Kim, J.H. Ryu, H. Joo, J. Yoon, H. Jung, J.I. Yang, Res. Chem. Intermed. 34, 811 (2008)CrossRefGoogle Scholar
  29. 29.
    F. Morales, O.L.J. Gijzeman, F.M.F. de Groot, B.M. Weckhuysen, Stud. Surf. Sci. Catal. 147, 271 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Clean Fuel LaboratoryKorea Institute of Energy ResearchDaejeonKorea
  2. 2.School of Applied Chemical EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations