Synthesis, characterisation, in vitro antimicrobial, antioxidant and anti-inflammatory activities of diorganotin(IV) complexes derived from salicylaldehyde Schiff bases

  • Jai DeviEmail author
  • Jyoti Yadav
  • Namita Singh


A new series of diorganotin(IV) complexes of 4-((2-hydroxybenzylidene)amino)-[1,1′-biphenyl]-3-ol (H2L1), 4-((2-hydroxy-5-nitrobenzylidene)amino)-[1,1′-biphenyl]-3-ol (H2L2), 4-((3-bromo-2-hydroxy-5-nitrobenzylidene)amino)-[1,1′-biphenyl]-3-ol (H2L3) and 4-((3,5-dibromo-2-hydroxybenzylidene)amino)-[1,1′-biphenyl]-3-ol (H2L4) Schiff base ligands with general formula R2SnL (where R = Me, Et, Bu and Ph) were synthesized. Structural aspect of these synthesized compounds have been described with the help of elemental analysis and spectroscopic techniques like FT-IR, UV–Vis, NMR, Mass and fluorescence. Schiff bases coordinated to tin metal as dibasic tridentate ligand through imine nitrogen and two phenolic oxygen atoms forming pentacoordinated complexes. Metal complexes gave low molar conductance value describing their non-electrolytic nature. Thermal decomposition of the complexes resulted in the formation of SnO2 as end product. The in vitro antimicrobial activities have been evaluated against Gram positive bacteria, Gram-negative bacteria and two fungal strains. The screening evaluation showed that organotin(IV) complexes have better antimicrobial activity. The free radical scavenging ability of the compounds was invest by in vitro antioxidant assay involving DPPH radical and was found to be moderately good. The anti-inflammatory activity was done by egg albumin method and percentage inhibition of protein denaturation was calculated. By comparing the biological activities of the synthesized compounds it was found that metal complexes were more potent than the free ligands and compounds 16, 20 were having more potential as drugs.

Graphical abstract


Schiff bases Diorganotin Fluorescence Antimicrobial Antioxidant Anti-inflammatory Albumin 



One of the author Ms. Jyoti Yadav is highly thankful to the HSCST Panchkula for the financial support and also thankful to A. P. J. Abdul Kalam Central Instrumentation Laboratory GJUS&T, Hisar for carrying the spectral data and Department of Chemistry, GJUS&T, Hisar for financial support in the form of research project.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

11164_2019_3830_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2127 kb)


  1. 1.
    N. Galic, Z. Cimerman, V. Tomisic, Spectrochim. Acta A 71, 1274 (2008)CrossRefGoogle Scholar
  2. 2.
    M.H.S.A. Hamid, A.N.A.H. Said, A.H. Mirza, M.R. Karim, Md Arifuzzaman, MdA Ali, P.V. Bernhardt, Inorg. Chim. Acta 453, 742 (2016)CrossRefGoogle Scholar
  3. 3.
    T.S.B. Baul, P. Kehie, A. Duthie, N. Guchhait, N. Raviprakash, R.B. Mokhamatam, S.K. Manna, N. Armata, M. Scopelliti, R. Wang, U. Englert, J. Inorg. Biochem. 168, 76 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Shujah, N. Khalid, S. Ali, Russ. J. Gen. Chem. 87(3), 515 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Nazneen, S. Ali, S. Shahzadi, S. Shujah, Russ. J. Gen. Chem. 87(12), 2970 (2017)CrossRefGoogle Scholar
  6. 6.
    P. Bhatra, J. Sharma, R.A. Sharma, Y. Singh, Appl. Organomet. Chem. 31(7), e3639 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Neelofar, N. Ali, A. Khan, S. Amir, N.A. Khan, M. Bilal, Bull. Chem. Soc. Ethiopia 31(3), 445 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Jain, V. Singh, R.V. Singh, J. Iran. Chem. Soc. 1, 20 (2004)CrossRefGoogle Scholar
  9. 9.
    Z. Asadi, Int. J. Chem. Kin. 43, 247 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Pellerito, L. Nagy, Coord. Chem. Rev. 224, 111 (2002)CrossRefGoogle Scholar
  11. 11.
    S.K. Bharti, S.K. Patel, G. Nath, R. Tilak, S.K. Singh, Trans. Met. Chem. 35, 917 (2010)CrossRefGoogle Scholar
  12. 12.
    N.A. Oztas, G. Yenisehirli, N. Ancınc, S.G. Oztas, Y. Ozcand, Spectrochim. Acta A 72, 929 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Devi, J. Yadav, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry—Anti-Cancer Agents), 18(3), 335 (2018)Google Scholar
  14. 14.
    J. Devi, S. Pachwania, Inorg. Chem. Commun. 91, 44 (2018)Google Scholar
  15. 15.
    R. Joshi, N. Pandey, R. Tilak, S.K. Yadav, H. Mishra, S. Pokharia, Appl. Organomet. Chem. 32(5), e4324 (2018)CrossRefGoogle Scholar
  16. 16.
    F. Shaheen, M. Sirajuddin, S. Ali, Z. Rehman, P.J. Dyson, N. Ali Shah, M.N. Tahir, J. Organomet. Chem. 186, 13 (2018)CrossRefGoogle Scholar
  17. 17.
    J.O. Adeyemi, D.C. Onwudiwe, Molecule 23(10), 2571 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Sankarganesh, J.D. Raja, K. Sakthikumar, R.V. Solomon, J. Rajesh, S. Athimoolam, V. Vijayakumar, Bioorg. Chem. 81, 144 (2018)CrossRefGoogle Scholar
  19. 19.
    M.S. Agiorgiti, A. Evangelou, P. Vezyraki, S.K. Hadjikakou, V. Kalfakakou, I.T. Sanaktsidi, A. Batistatou, J. Zelovitis, Y.V. Simos, V. Ragos, S. Karkabounas, D. Peschos, Med. Chem. Res. 27(4), 1122 (2018)CrossRefGoogle Scholar
  20. 20.
    P.G. Avaji, C.V. Kumar, S.A. Patil, K. Shivananda, C. Nagaraju, Eur. J. Med. Chem. 44, 3552 (2009)CrossRefGoogle Scholar
  21. 21.
    J.O. Adeyemi, D.C. Onwudiwe, A.C. Ekennia, C.P. Anokwuru, N. Nundkumar, M. Singh, E.C. Hosten, Inorg. Chim. Acta 485, 64 (2019)CrossRefGoogle Scholar
  22. 22.
    Q.K. Panhwar, S. Memon, Inorg. Chim. Acta 407, 252 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Carcelli, G. Corazzari, S. Ianelli, G. Pelizzi, C. Solinas, Inorg. Chim. Acta 353, 310 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Nardelli, C. Pelizzi, G. Pelizzi, P. Tarasconi, J. Chem. Soc., Dalton Trans. 0(2), 321 (1985)CrossRefGoogle Scholar
  25. 25.
    M.A. Girasolo, A. Attanzio, P. Sabatino, L. Tesoriere, S. Rubino, G. Stocco, Inorg. Chim. Acta 423(B), 168 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Devi, S. Devi, A. Kumar, Med. Chem. Comm. 5 (2016)Google Scholar
  27. 27.
    J. Devi, S. Devi, A. Kumar, Heterocyc. Chem. 27(6), 361 (2016)Google Scholar
  28. 28.
    J. Devi, S. Kumari, S. Devi, R. Malhotra, P. Kumar, B. Narasimhan, Monatsh. für Chem. 146(12), 1995 (2014)CrossRefGoogle Scholar
  29. 29.
    A.I. Vogel, Text Book of Quantitative Chemical Analysis, 5th edn. (Longmans, Edison, 1999)Google Scholar
  30. 30.
    J. Devi, N. Batra, Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 710 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Devi, M. Yadav, D. Kumar, L.S. Naik, D.K. Jindal, J. App. Organomet. Chem. 33(2), e4693 (2019)CrossRefGoogle Scholar
  32. 32.
    A. Braca, N.D. Tommasi, L.D. Bari, C. Pizza, M. Politi, I. Morelli, J. Nat. Prod. 64, 892 (2001)CrossRefGoogle Scholar
  33. 33.
    B. Bozin, N.M. Dukic, I. Samojlik, A. Goran, R. Igic, Food Chem. 111, 925 (2008)CrossRefGoogle Scholar
  34. 34.
    S. Chandra, P. Chatterjee, P. Dey, S. Bhattacharya, Asian Pacific J. Trop. Biomed. S178 (2012)Google Scholar
  35. 35.
    S. Chandra, P. Chatterjee, P. Dey, S. Bhattacharya, J. Adv. Pharm. Edu. Res. 2, 25 (2012)Google Scholar
  36. 36.
    H.L. Singh, J.B. Singh, K.P. Sharma, Res. Chem. Intermed. 38, 53 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Devi, M. Yadav, A. Kumar, A. Kumar, Chem. pap. (2018)Google Scholar
  38. 38.
    H.L. Singh, J.B. Singh, S. Bhanuka, Res. Chem. Intermed. 42, 997 (2016)CrossRefGoogle Scholar
  39. 39.
    M. Hong, H.D. Yin, X.Y. Zhang, C. Li, C.H. Yue, S. Cheng, J. Organomet. Chem. 724, 23 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Shujah, Z. Urrehman, S. Ali, N. Khalid, N. Muhammad, M.N. Tahir, J. Organomet. Chem. 696, 2772 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Shujah, S. Ali, N. Khalid, M.J. Alam, S. Ahmad, A. Meetsma, Chem. Pap. 72, 903 (2017)CrossRefGoogle Scholar
  42. 42.
    Yu-Xing Tan, Zhi-Jian Zhang, Yang Liu, Yu. Jiang-Xi, Xiao-Ming Zhu, Dai-Zhi Kuang, Wu-Jiu Jiang, J. Mol. Struct. 1149, 874 (2017)CrossRefGoogle Scholar
  43. 43.
    T.P. Lockhart, W.F. Manders, Inorg. Chem. 25, 892 (1986)CrossRefGoogle Scholar
  44. 44.
    T.P. Lockhart, W.F. Manders, J. Am. Chem. Soc. 109, 7015 (1987)CrossRefGoogle Scholar
  45. 45.
    H.D. Yin, S.W. Chen, L.W. Li, D.Q. Wang, Inorg. Chim. Acta 360, 2215 (2007)CrossRefGoogle Scholar
  46. 46.
    L.S. Mun, M.A. Hapipah, S.K. Shin, A.M. Sri Nurestri, L.K. Mun, Appl. Organomet. Chem. 26, 310–311 (2012)CrossRefGoogle Scholar
  47. 47.
    K. SinghDharampal, Dharampal, V. Parkash, Phosphorus, Sulfur Silicon Relat. Elem. 183, 2784 (2008)CrossRefGoogle Scholar
  48. 48.
    J. Wagler, U. Bohme, E. Brendler, B. Thomas, S. Goutal, H. Mayr, B. Kempf, G.Y. Remennikov, G. Roewer, Inorg. Chim. Acta 358, 4270 (2005)CrossRefGoogle Scholar
  49. 49.
    G.G. Mohamed, C.M. Sharaby, Spectrochim. Acta A 66, 949 (2007)CrossRefGoogle Scholar
  50. 50.
    M. Gulcan, Y. Karatas, S. Isik, G. Ozturk, E. Akbas, E. Sahin, J. Fluoresc. 24, 1679 (2014)CrossRefGoogle Scholar
  51. 51.
    Y. Han-dong, C. Ji-Chun, Q. Yan-Ling, Polyhedron 27, 2157 (2008)CrossRefGoogle Scholar
  52. 52.
    A. Chilwal, P. Malhotra, A.K. Narula, Phosphorus, Sulfur Silicon Relat. Elem. 189, 410 (2014)CrossRefGoogle Scholar
  53. 53.
    S. Mun Lee, H.M.A. Kae, S. Sim, S.N.A. Malek, K.M. Lo, Inorg. Chim. Acta 406, 272 (2013)CrossRefGoogle Scholar
  54. 54.
    K.S. Prasad, L.S. Kumar, M. Prasad, H.D. Revanasiddappa, Bioinorg. Chem. Appl. 2010, 1 (2010)CrossRefGoogle Scholar
  55. 55.
    J. Devi, S. Kumari, S. Asijaa, R. Malhotra, Phosphorus, Sulfur Silicon Relat. Elem. 187, 1409 (2012)CrossRefGoogle Scholar
  56. 56.
    Y. Anjaneyula, R.P. Rao, Synth. React. Inorg. Met. Org. Chem. 16, 257 (1986)CrossRefGoogle Scholar
  57. 57.
    Z.H. Chohan, A. Scozzafava, C.T. Supuran, J. Enzy. Inhib. Med. Chem. 18, 259 (2003)CrossRefGoogle Scholar
  58. 58.
    R. Raman, A. Selvan, J. Coord. Chem. 64, 534 (2011)CrossRefGoogle Scholar
  59. 59.
    A. Chilwal, P. Malhotra, A.K. Narula, Phosphorus, Sulfur Silicon Relat. Elem. 189, 410 (2014)CrossRefGoogle Scholar
  60. 60.
    M.A. Affan, M.A. Salam, F.B. Ahmad, R.B. Hitam, F. White, Polyhedron 33, 19 (2012)CrossRefGoogle Scholar
  61. 61.
    D.B. Shpakovsky, C.N. Banti, E.M. Mukhatova, YuA Gracheva, V.P. Osipova, N.T. Berberova, D.V. Albov, T.A. Antonenko, L.A. Aslanov, E.R. Milaev, S.K. Hadjikakoub, Dalton Trans. 43, 6880 (2014)CrossRefGoogle Scholar
  62. 62.
    S. Jabbar, I. Shahzadi, R. Rehman, H. Iqbal, Q. Ul-Ain, A. Jamil, R. Kousar, S. Ali, S. Shahzadi, M.A. Choudhary, M. Shahid, Q.M. Khan, S.K. Sharma, K. Qanungo, J. Coord. Chem. 65(4), 572 (2012)CrossRefGoogle Scholar
  63. 63.
    A. Ramírez-Jiménez, R. Luna-García, A. Cortés-Lozada, S. Hernández, T.R. írez-Apan, A. Nieto-Camacho, E. Gómez, J. Organomet. Chem. 738, 10 (2013)CrossRefGoogle Scholar
  64. 64.
    M. Sirajuddin, S. Ali, F.A. Shah, M. Ahmad, M.N. Tahir, J. Iran. Chem. Soc. 11, 297 (2014)CrossRefGoogle Scholar
  65. 65.
    F. Diaz-Gonzalez, I. Gonzalez-Alvaro, M.R. Campanero, F. Mollinedo, M.A. del Pozo, C. Munoz, J.P. Pivel, F. Sinchez-Madrid, J. Clin. Invest. 95, 1756 (1995)CrossRefGoogle Scholar
  66. 66.
    M. Nath, P.K. Saini, A. Kumar, J. Organomet. Chem. 695, 1353 (2010)CrossRefGoogle Scholar
  67. 67.
    M. Nath, R. Yadav, G. Eng, T. Nguyen, A. Kumar, J. Organomet. Chem. 577, 1 (1999)CrossRefGoogle Scholar
  68. 68.
    G. A. Kaysen, J. A. Dubin, Hans-Georg M¨Uller, L. Rosales, N. W. Levin, W. E. Mitch, The Hemo Study Group, Kidney International, 65, 1408 (2004)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryGuru Jambheshwar University of Science and TechnologyHisarIndia
  2. 2.Department of Bio and Nano TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations