Investigation of removal of HCHO by Zn modified Co3O4 catalyst at room temperature

  • Junliang Xie
  • Mianwu MengEmail author
  • Yuhong Tang
  • Pengpeng Yang
  • Caiyan Kang
  • Zhenming Zhou
  • Siyu Huang


In this paper, removal of formaldehyde on Zn-modified Co3O4 catalyst under room temperature was investigated. The performance tests on different zinc nitrate molar concentration doped catalysts which were prepared by the hydrothermal method demonstrated that the catalyst shows excellent HCHO removal performance when the zinc nitrate molar concentration was 0.6 (Zn0.6CoO). The effects of Zn addition on the structure and activity of the Co3O4 catalyst was studied by X-ray diffraction, Fourier transform infrared spectroscopy, N2-absorption/desorption, Raman, scanning electron microscopy, a transmission electron microscope and X-ray photoelectron spectroscopy. The results showed that Zn is doped into the lattice of Co3O4 and caused lattice distortion, which should be the key to increase the oxygen vacancy concentration. In addition, doping Zn improves the specific surface area of the Co3O4 catalyst, which indirectly provides more active sites for HCHO, and the activity of Zn0.6CoO catalyst with high oxygen vacancy concentration is higher than Co3O4 nanobelts, which indicates that doping Zn enhances the HCHO removal performance by increasing the oxygen vacancy content.


Cobalt oxide Zn-modified Formaldehyde removal Oxygen vacancy 



Thanks to the support of Innovation Project of Guangxi Graduate Education (YCSW2018090); National Natural Science Foundation of China (No. 21467002); and Key Laboratory of Ecology Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China (Grant Numbers ERESEP2017Z05).


  1. 1.
    Y.P. Zhang, J.H. Mo, C.J. Weschler, Environ. Health Perspect. 121, 751 (2013)CrossRefGoogle Scholar
  2. 2.
    K.P. Ioannis, N.K. Athanasios, K. Pavlos, A. Kostantinos, Aerosol Air Qual. Res. 11, 758 (2011)CrossRefGoogle Scholar
  3. 3.
    T. Salthammer, Angew. Chem. Int. Ed. Engl. 52, 3320 (2013)CrossRefGoogle Scholar
  4. 4.
    L.P. Zhang, C. Steinmaus, D.A. Eastmond, X.J.K. Xin, M.T. Smith, Mutat. Res. 681, 150 (2009)CrossRefGoogle Scholar
  5. 5.
    S.H. Lu, K.L. Li, F.L. Huang, C.C. Chen, B. Sun, Appl. Surf. Sci. 400, 277 (2017)CrossRefGoogle Scholar
  6. 6.
    B.Y. Bai, Q. Qiao, J.H. Li, J.M. Hao, Chin. J. Catal. 37, 102 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Le, D.P. Guo, B. Cheng, J.G. Yu, Appl. Surf. Sci. 274, 110 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Arabzadeh, A. Salimi, J. Colloid Interface Sci. 479, 43 (2016)CrossRefGoogle Scholar
  9. 9.
    W.N. Li, J. Yuan, X.F. Shen, S.G. Mower, L.P. Xu, S. Sithambaram, M. Aindow, S.L. Suib, Adv. Funct. Mater. 16, 1247 (2006)CrossRefGoogle Scholar
  10. 10.
    J.M. Shin, R.M. Anisur, M.K. Ko, G.H. Im, J.H. Lee, I.S. Lee, Angew. Chem. Int. Ed. 48, 321 (2009)CrossRefGoogle Scholar
  11. 11.
    X.H. Xia, J.P. Tu, J. Zhang, J.Y. Xiang, X.L. Wang, X.B. Zhao, ACS Appl. Mater. Interfaces. 2, 186 (2010)CrossRefGoogle Scholar
  12. 12.
    L.P. Xu, S. Sithambaram, Y.S. Zhang, C.H. Chen, L. Jin, R. Joesten, S.L. Suib, Chem. Mater. 21, 1253 (2009)CrossRefGoogle Scholar
  13. 13.
    J.Y. Li, S.L. Xiong, J. Pan, Y.T. Qian, J. Phys. Chem. C 114, 9645 (2010)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Fan, Z.X. Zhang, W.J. Fang, X. Yao, G.C. Zou, W.F. Shangguan, Chin. J. Catal. 37, 947 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Suyana, P. Gangguly, B.N. Nair, A.P. Mohamed, K.G.K. Warrier, U.S. Hareesh, Environ. Sci. Nano 4, 212 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Lou, J. Ma, X.M. Cao, L. Wang, Q.G. Dai, Z.Y. Zhao, Y.F. Cai, W.C. Zhan, Y.L. Guo, P. Hu, G.Z. Lu, Y. Guo, ACS Catal. 4, 4143 (2014)CrossRefGoogle Scholar
  17. 17.
    B.Y. Bai, H. Arandiyan, J.H. Li, Appl. Catal. B Environ. 142, 677 (2013)CrossRefGoogle Scholar
  18. 18.
    Z.Y. Fan, W.J. Fang, Z.X. Zhang, M.X. Chen, W.F. Shangguan, Catal. Commun. 103, 10 (2018)CrossRefGoogle Scholar
  19. 19.
    S.S. Kim, K.H. Park, S.C. Hong, Appl. Catal. A Gen. 398, 96 (2011)CrossRefGoogle Scholar
  20. 20.
    N.H. An, W.L. Zhang, X.L. Yuan, B. Pan, G. Liu, M.J. Jia, W.F. Yan, W.X. Zhang, Chem. Eng. J. 215, 1 (2013)CrossRefGoogle Scholar
  21. 21.
    S.J. Park, I. Bae, I.S. Nam, B.K. Cho, S.M. Jung, J.H. Lee, Chem. Eng. J. 195, 392 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Chen, D.X. Yan, Z. Xu, X. Chen, X. Chen, W.J. Xu, H.P. Jia, J. Chen, Environ. Sci. Technol. 52, 4728 (2018)CrossRefGoogle Scholar
  23. 23.
    L. Sun, W.L. Luan, T.C. Wang, W.X. Su, L.X. Zhang, Nanotechnology 28, 1 (2017)Google Scholar
  24. 24.
    Y. Yao, L.L. Gu, W. Jiang, H.C. Sun, Q. Su, J. Zhao, W.J. Ji, C.T. Au, Catal. Sci. Technol. 6, 2349 (2016)CrossRefGoogle Scholar
  25. 25.
    C.Y. Li, Y.N. Shen, M.L. Jia, S.S. Sheng, M.O. Adebajo, H.Y. Zhu, Catal. Commun. 9, 355 (2008)CrossRefGoogle Scholar
  26. 26.
    H.W. Du, Y. Wang, H. Arandiyan, J. Scott, T. Wan, D.W. Chu, Catal. Sci. Technol. 8, 134 (2018)CrossRefGoogle Scholar
  27. 27.
    C.T. Wang, D.L. Lai, M.T. Chen, Appl. Surf. Sci. 257, 127 (2010)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, W.Z. Wang, L. Zhang, D. Jiang, Catal. Sci. Technol. 6, 3845 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Wang, L.X. Zhang, W.M. Huang, T.P. Xiu, C.G. Zhuang, J.L. Shi, Chem. Eng. J. 320, 667 (2017)CrossRefGoogle Scholar
  30. 30.
    Y.B. Li, C.B. Zhang, J.Z. Ma, M. Chen, H. Deng, H. He, Appl. Catal. B Environ. 217, 560 (2017)CrossRefGoogle Scholar
  31. 31.
    F.L. Huang, C.C. Chen, F. Wang, B. Wang, L.L. Zhang, S.H. Lu, K.L. Li, Catal. Surv. Asia 21, 143 (2017)CrossRefGoogle Scholar
  32. 32.
    F. Qi, W. Chu, B.B. Xu, Chem. Eng. J. 262, 552 (2015)CrossRefGoogle Scholar
  33. 33.
    Q.Y. Yan, X.Y. Li, Q.D. Zhao, G.H. Chen, J. Hazard. Mater. 209, 385 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012)CrossRefGoogle Scholar
  35. 35.
    Y.C. You, H.Z. Chang, L. Ma, L. Guo, X. Qin, J.Y. Li, J.H. Li, Chem. Eng. J. 347, 184 (2018)CrossRefGoogle Scholar
  36. 36.
    C.W. Na, H.S. Woo, H.J. Kim, U. Jeong, J.H. Chung, J.H. Lee, CrystEngComm 14, 3737 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Bouchard, A. Gambardella, J. Raman Spectrosc. 41, 1477 (2010)CrossRefGoogle Scholar
  38. 38.
    Y. Lou, L. Wang, Z.Y. Zhao, Y.H. Zhang, Z.G. Zhang, G.Z. Lu, Y. Guo, Y.L. Guo, Appl. Catal. B Environ. 146, 43 (2014)CrossRefGoogle Scholar
  39. 39.
    I. Lopes, N.E. Hassan, H. Guerba, G. Wallez, A. Davidson, Chem. Mater. 18, 5826 (2006)CrossRefGoogle Scholar
  40. 40.
    Z.X. Yan, Z.H. Xu, J.G. Yu, M. Jaroniec, J. Colloid Interface Sci. 501, 164 (2017)CrossRefGoogle Scholar
  41. 41.
    C.Y. Ma, D.H. Wang, W.J. Xue, B.J. Dou, H.L. Wang, Z.P. Hao, Environ. Sci. Technol. 45, 3628 (2011)CrossRefGoogle Scholar
  42. 42.
    B. Cheng, Y. Le, W.Q. Cai, J.G. Yu, J. Hazard. Mater. 185, 889 (2011)CrossRefGoogle Scholar
  43. 43.
    S.P. Mo, S.D. Li, Q.M. Ren, M.Y. Zhang, Y.H. Sun, B.F. Wang, Z.T. Feng, Q. Zhang, Y.F. Chen, D.Q. Ye, Nanoscale 10, 7746 (2018)CrossRefGoogle Scholar
  44. 44.
    K.L. Jiao, Z.P. Kang, B. Wang, S.Q. Jiao, Y. Jiang, Z.Q. Hu, Electroanalysis 30, 1 (2018)CrossRefGoogle Scholar
  45. 45.
    X.W. Xie, Y. Li, Z.Q. Liu, M. Haruta, W.J. Shen, Nature 458, 746 (2009)CrossRefGoogle Scholar
  46. 46.
    C.Y. Ma, Z. Mu, J.J. Li, Y.G. Jin, J. Cheng, G.Q. Lu, Z.P. Hao, S.Z. Qiao, J. Am. Chem. Soc. 132, 2608 (2010)CrossRefGoogle Scholar
  47. 47.
    K. Wang, Y.L. Cao, J.D. Hu, Y.Z. Li, J. Xie, D.Z. Jia, Appl. Mater. Interface 9, 16128 (2017)CrossRefGoogle Scholar
  48. 48.
    S.P. Mo, S.D. Li, W.H. Li, J.Q. Li, J.Y. Chen, Y.F. Chen, J. Mater. Chem. A 4, 8113 (2016)CrossRefGoogle Scholar
  49. 49.
    S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J.P. Deloume, P. Vernoux, Appl. Catal. B Environ. 88, 438 (2009)CrossRefGoogle Scholar
  50. 50.
    Y.X. Liu, H.X. Dai, J.G. Deng, S.H. Xie, H.G. Yang, W. Tan, W. Han, Y. Jiang, G.S. Guo, J. Catal. 309, 408 (2014)CrossRefGoogle Scholar
  51. 51.
    S. Pang, J. Huang, Y. Su, B. Geng, S. Lei, Y. Huang, C.L.X. Liu, Photochem. Photobiol. 92, 651 (2016)CrossRefGoogle Scholar
  52. 52.
    U. Ilyas, R.S. Rawat, G. Roshan, T.L. Tan, P. Lee, S.V. Springham, S. Zhang, F.J. Li, R. Chen, H.D. Sun, Appl. Surf. Sci. 258, 890 (2011)CrossRefGoogle Scholar
  53. 53.
    C.J. Cong, L. Liao, J.C. Li, L.X. Fan, K.L. Zhang, Nanotechnology 16, 981 (2005)CrossRefGoogle Scholar
  54. 54.
    F. Lin, G.Q. Zhu, Y.N. Shen, Z.Y. Zhang, B. Dong, Appl. Surf. Sci. 356, 150 (2015)CrossRefGoogle Scholar
  55. 55.
    Z.H. Xu, J.G. Yu, G. Liu, B. Cheng, P. Zhou, X.Y. Li, Dalton Trans. 42, 10190 (2013)CrossRefGoogle Scholar
  56. 56.
    C. Doornkamp, V. Ponec, J. Mol. Catal. A Chem. 162, 19 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinPeople’s Republic of China
  2. 2.Department of EducationKey Laboratory of Karst Ecology and Environment Change of GuangxiGuilinPeople’s Republic of China
  3. 3.Guangxi Key Laboratory of Environmental Pollution Control Theory and TechnologyGuilinPeople’s Republic of China
  4. 4.College of Environment and ResourcesGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations