Study on distribution, chemical states and binding energy shifts of elements on the surface of gasification fine ash

  • Yuanchun Zhang
  • Hanxu LiEmail author
  • Chengli Wu


Using feed coal as a reference, a series of modern advanced analysis and measurement technologies such as X-ray photoelectron spectroscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy and X-ray diffraction have been used to analyze the gasification fine ash obtained from a pulverized coal gasification unit. The results show that the fine ash mainly consists of elemental carbon, oxygen, silicon, and aluminum. The elemental carbon distributes primarily on the foams structure, while the spherical particles mainly consisted of silicon and aluminum are embedded in the foams structure. The C1s spectrum is composed of five components in which the content of graphitized carbon is up to 38.36%, and the content of aromatic C–C or C–H, the main existing form on coal surface, is only 25.75%. The 67.31% of elemental silicon is combined with bridging oxygen (Si–O) and 32.69% of that connected to non-bridging oxygen (Si–O2). The existence of aluminum is in the form of aluminum oxides with two coordinated modes ([AlO6] and [AlO4]), and the content of [AlO6] group is nearly double that of [AlO4]. Simultaneously, the binding energies of silicon and aluminum increase by approximately 3 eV, while that of carbon almost no change because of the number of carbon atoms is significantly higher than that of other elements. The silicon atoms and aluminum atoms are surrounded by masses of carbon atoms for the special microstructure of FA. The different chemical states of carbon with higher electronegativity along with the role of high temperature and pressure make the binding energies of silicon and aluminum changed dramatically.


Gasification fine ash Distribution Chemical state Electron binding energy shift Electronegativity 



This work was supported by the National Natural Science Foundation of China (Grant No. 21376006), and the Major Science and Technology Special Projects Foundation of Anhui Province (15czz02045).


  1. 1.
    X.L. Zhao, C. Zeng, Y.Y. Mao, W.H. Li, Y. Peng, T. Wang, B. Eiteneer, V. Zamansky, T. Fletcher, Energy Fuel 24, 91 (2010)CrossRefGoogle Scholar
  2. 2.
    W. Rybak, W. Moroń, K.M. Czajka, A.M. Kisiela, W. Ferens, W. Jodkowski, C. Andryjowicz, Energy Proc. 120, 197 (2017)CrossRefGoogle Scholar
  3. 3.
    S.Y. Wu, S. Huang, Y.Q. Wu, J.S. Gao, J. Energy Inst. 88, 93 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Huo, Z.J. Zhou, Q.H. Guo, G. Yu, Energy Fuel 29, 3525 (2015)CrossRefGoogle Scholar
  5. 5.
    M.J. Du, J.J. Huang, Z.Y. Liu, X. Zhou, S. Guo, Z.Q. Wang, Y.T. Fang, Fuel 224, 178 (2018)CrossRefGoogle Scholar
  6. 6.
    Z.Q. Ouyang, W. Liu, J.G. Zhu, J.Z. Liu, C.B. Man, Fuel 215, 378 (2018)CrossRefGoogle Scholar
  7. 7.
    S.Q. Xu, Z.J. Zhou, X.X. Gao, G.S. Yu, X. Gong, Fuel Process. Technol. 90, 1062 (2009)CrossRefGoogle Scholar
  8. 8.
    N.J. Wagner, R.H. Matjie, J.H. Slaghuis, J.H.P.V. Heerden, Fuel 87, 683 (2008)CrossRefGoogle Scholar
  9. 9.
    S.Y. Wu, S. Huang, L.Y. Ji, Y.Q. Wu, J.S. Gao, Fuel 122, 67 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Shawabkeh, M.J. Khan, A.A. Al-Juhani, H.I.A. Wahhab, I.A. Hussein, Appl. Surf. Sci. 258, 1643 (2011)CrossRefGoogle Scholar
  11. 11.
    J.C. Hower, J.G. Groppo, U.M. Graham, C.R. Ward, I.J. Kostova, M.M. Maroto-Vale, S.F. Dai, Int. J. Coal Geol. 179, 11 (2017)CrossRefGoogle Scholar
  12. 12.
    S.T. Gao, H.L. Xing, Y.F. Li, H. Wang, Res. Chem. Intermed. 44, 3425 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.C. Zhang, S.T. Gao, H.L. Xing, J. Alloys Compd. 777, 544 (2019)CrossRefGoogle Scholar
  14. 14.
    S.H. Yoo, S. Lee, H. Joh, S. Lee, J. Ind. Eng. Chem. 63, 27 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Han, W.C. Li, C. Lei, B. He, K. Oshida, A.H. Lu, Small 10, 2637 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Borhani, M. Moradi, M.A. Kiani, S. Hajati, J. Toth, Ceram. Int. 43, 14413 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Chun, W. Son, C. Choi, Carbon 139, 586 (2018)CrossRefGoogle Scholar
  18. 18.
    W.C. Xia, J.G. Yang, C. Liang, Appl. Surf. Sci. 293, 293 (2014)CrossRefGoogle Scholar
  19. 19.
    J.L. Hou, Y. Ma, S.Y. Li, J. Shi, L. He, J. Li, Fuel 231, 134 (2018)CrossRefGoogle Scholar
  20. 20.
    L.J. Zhang, Z.H. Li, W.J. He, J.H. Li, X.Y. Qi, J. Zhu, L.M. Zhao, X. Zhang, Fuel 222, 350 (2018)CrossRefGoogle Scholar
  21. 21.
    J.L. Hou, Y. Ma, S.Y. Li, W.Z. Shang, Carbon Resour. Convers. 1, 86 (2018)CrossRefGoogle Scholar
  22. 22.
    S.W. Wang, L.F. Tang, X.X. Tao, Fuel 212, 326 (2018)CrossRefGoogle Scholar
  23. 23.
    X.D. Chen, L.X. Kong, J. Bai, X. Dai, H.Z. Li, Z.Q. Bai, W. Li, Appl. Energy 206, 1241 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Levi, O. Senneca, M. Causà, P. Salatino, P. Lacovig, S. Lizzit, Carbon 90, 181 (2015)CrossRefGoogle Scholar
  25. 25.
    X.Q. Meng, P.G. Ning, G.J. Xu, H.B. Cao, Sep. Purif. Technol. 175, 506 (2017)CrossRefGoogle Scholar
  26. 26.
    X.Y. Zhou, L.L. Ma, J. Yang, B. Huang, Y.L. Zou, J.J. Tang, J. Xie, S.C. Wang, G.H. Chen, J. Electroanal. Chem. 698, 39 (2013)CrossRefGoogle Scholar
  27. 27.
    L.J. Zhang, Z.H. Li, Y.L. Yang, Y.B. Zhou, B. Kong, J.H. Li, L.L. Si, Fuel 184, 418 (2016)CrossRefGoogle Scholar
  28. 28.
    L.F.O. Silva, M. Izquierdo, X. Querol, R.B. Finkelman, M.L.S. Oliveira, M. Wollenschlager, M. Towler, R. Pérez-López, F. Macias, Environ. Monit. Assess. 175, 109 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.D. Zhang, X.J. Kang, J.L. Tan, R.L. Frost, Energy Fuel 27, 7191 (2013)CrossRefGoogle Scholar
  30. 30.
    Q.L. Shi, B.T. Qin, Q. Bi, B. Qu, Fuel 226, 307 (2018)CrossRefGoogle Scholar
  31. 31.
    K. Li, S.M. Rimmer, Q.F. Liu, Int. J. Coal Geol. 195, 267 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Kozłowski, Fuel 83, 259 (2004)CrossRefGoogle Scholar
  33. 33.
    C. Palegrosdemange, E.S. Simon, K.L. Prime, G.M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991)CrossRefGoogle Scholar
  34. 34.
    K. Uvdal, P. Bodo, B. Liedberg, J. Colloid Interfaces Sci. 149, 162 (1992)CrossRefGoogle Scholar
  35. 35.
    D.L. Perry, A. Grint, Fuel 62, 1024 (1983)CrossRefGoogle Scholar
  36. 36.
    D. Atzei, M. Fantauzzi, A. Rossi, P. Fermo, A. Piazzalunga, G. Valli, R. Vecchi, Appl. Surf. Sci. 307, 120 (2014)CrossRefGoogle Scholar
  37. 37.
    A. Wollbrinkp, C.H. Rüscher, K. Volgmann, J. Koch, A. Breuksch, C. Tegenkamp, J. Caro, J. Membr. Sci. 528, 316 (2017)CrossRefGoogle Scholar
  38. 38.
    J.H. Shinn, Fuel 63, 1187 (1984)CrossRefGoogle Scholar
  39. 39.
    L. Randy, V. Wal, V.M. Bryg, M.D. Hays, Anal. Chem. 83, 1924 (2011)CrossRefGoogle Scholar
  40. 40.
    X. Li, Y. Qiu, Appl. Surf. Sci. 258, 4939 (2012)CrossRefGoogle Scholar
  41. 41.
    E. Botha, M. Landman, P.H. Rooyen, E. Erasmus, Inorg. Chim. Acta 482, 514 (2018)CrossRefGoogle Scholar
  42. 42.
    M. Lee, S. Kim, D. Ko, Appl. Surf. Sci. 443, 131 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Earth and EnvironmentAnhui University of Science and TechnologyHuainanPeople’s Republic of China
  2. 2.School of Chemical EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China

Personalised recommendations