Advertisement

Graphene based emergent nanolights: a short review on the synthesis, properties and application

  • Poushali Das
  • Sayan Ganguly
  • Susanta Banerjee
  • Narayan Chandra DasEmail author
Article
  • 39 Downloads

Abstract

Graphene oxide (or graphene) derived graphene quantum dots (GQDs) are the primary building blocks for nano-devices because of their superior electronic, thermal, optical and toughening (in matrix) characteristics. There are various methods to prepare GQDs where “top-down” method has been practiced widely. This is a size reduction technique from micrometer sized graphene sheets to nanometer sized (< 10 nm) quantum particles with well-confined shape and quantum confinement effect. GQDs are emerging as promising optical materials for biological applications. This review will project the detailed “top-down” method; rather such as molecular scissoring of graphene sheets to quantum dots, optical characteristics and applications.

Keywords

Graphene Graphene oxide Graphene quantum dots Synthesis Physical properties Biological applications Chemical properties 

Abbreviations

AFM

Atomic force microscope

BCP

Block copolymers

CNTs

Carbon nanotubes

CVD

Chemical vapor deposition

DMF

N,N-dimethylformamide

DMSO

Dimethyl sulfoxide

GO

Graphene oxide

GQDs

Graphene quantum dots

HBC

Hexa-peri-hexabenzocoronene

IR

Infra-red

LEDs

Light emitting diodes

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MWCNTs

Multiwall carbon nanotubes

N-GQDs

Nitrogen-doped graphene quantum dots

PEG

Polyethylene glycol

PL

Photoluminescence

QDs

Quantum dots

QY

Quantum yield

RF-GQDs

Red fluorescent graphene quantum dots

NaBH4

Sodium borohydride

TEM

Transmission electron microscope

TNT

2,4,6-Trinitrotoluene

UV

Ultraviolet

Notes

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 5696 (2004)CrossRefGoogle Scholar
  2. 2.
    E.V. Castro, K. Novoselov, S. Morozov, N. Peres, J.L. dos Santos, J. Nilsson, F. Guinea, A. Geim, A.C. Neto, J. Phys. Condens. Matter 22, 17 (2010)Google Scholar
  3. 3.
    S. Ganguly, D. Ray, P. Das, P.P. Maity, S. Mondal, V. Aswal, S. Dhara, N.C. Das, Ultrasonics Sonochem. 42, 212 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Ganguly, P. Das, P.P. Maity, S. Mondal, S. Ghosh, S. Dhara, N.C. Das, J. Phys. Chem. B 122, 29 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Ganguly, S. Mondal, P. Das, P. Bhawal, T.K. Das, S. Ghosh, S. Remanan, N.C. Das, Macromol. Res. (2018).  https://doi.org/10.1007/s13233-019-7039-y Google Scholar
  6. 6.
    M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 20 (2007)Google Scholar
  7. 7.
    S. Ganguly, S. Mondal, P. Das, P. Bhawal, T. Kanti Das, M. Bose, S. Choudhary, S. Gangopadhyay, A.K. Das, N.C. Das, Nano Struct. Nano Objects 16, 86 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Science 320, 5874 (2008)CrossRefGoogle Scholar
  9. 9.
    J.M. Tour, R. Ye, C. Xiang, J. Lin, Z. Peng and G. Ceriotti, (Google Patents, 2018)Google Scholar
  10. 10.
    N.M. Freitag, T. Reisch, L.A. Chizhova, P. Nemes-Incze, C. Holl, C.R. Woods, R.V. Gorbachev, Y. Cao, A.K. Geim, K.S. Novoselov, Nat. Nanotechnol. 13, 5 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Kaur, M. Kaur, V.K. Sharma, Adv. Colloid Interface Sci. 259, 44 (2018)CrossRefPubMedGoogle Scholar
  12. 12.
    J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, Nano Lett. 12, 2 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, Chem. Commun. 47, 24 (2011)Google Scholar
  14. 14.
    D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 22, 6 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, Nat. Commun. 5, 5357 (2014)CrossRefPubMedGoogle Scholar
  16. 16.
    K.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, Y.-P. Sun, A.C.S. Appl, Mater. Interfaces 7, 16 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, ACS Nano 6, 6 (2012)Google Scholar
  18. 18.
    J. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 48, 31 (2012)Google Scholar
  19. 19.
    C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, C.M. Li, Angew. Chem. Int. Ed. 49, 17 (2010)Google Scholar
  20. 20.
    Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu. Adv. Mater. 23, 6 (2011)Google Scholar
  21. 21.
    X. Yan, X. Cui, B. Li, L.-S. Li, Nano Lett. 10, 5 (2010)Google Scholar
  22. 22.
    P. Das, M. Bose, S. Ganguly, S. Mondal, A.K. Das, S. Banerjee, N.C. Das, Nanotechnology 28, 19 (2017)Google Scholar
  23. 23.
    P. Das, S. Ganguly, S. Mondal, U.K. Ghorai, P.P. Maity, S. Choudhary, S. Gangopadhyay, S. Dhara, S. Banerjee, N.C. Das, Luminescence 33, 6 (2018)CrossRefGoogle Scholar
  24. 24.
    P. Das, S. Ganguly, M. Bose, S. Mondal, A.K. Das, S. Banerjee, N.C. Das, Mater. Sci. Eng. C 75, 1456 (2017)CrossRefGoogle Scholar
  25. 25.
    M.H. Amini, F. Faridbod, M.R. Ganjali, P. Norouzi, Res. Chem. Intermed. 43, 12 (2017)CrossRefGoogle Scholar
  26. 26.
    P. Das, S. Ganguly, P.P. Maity, M. Bose, S. Mondal, S. Dhara, A.K. Das, S. Banerjee, N.C. Das, J. Photochem. Photobiol. B 180, 56 (2018)CrossRefPubMedGoogle Scholar
  27. 27.
    P. Das, S. Ganguly, S. Mondal, M. Bose, A.K. Das, S. Banerjee, N.C. Das, Sens. Actuators B 266, 583 (2018)CrossRefGoogle Scholar
  28. 28.
    P. Das, S. Ganguly, M. Bose, S. Mondal, S. Choudhary, S. Gangopadhyay, A.K. Das, S. Banerjee, N.C. Das, Mater. Sci. Eng. C 88, 115 (2018)CrossRefGoogle Scholar
  29. 29.
    L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Talanta 101, 192 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, G. Chen, Anal. Chem. 84, 19 (2012)Google Scholar
  31. 31.
    S. Ganguly, P. Das, M. Bose, T.K. Das, S. Mondal, A.K. Das, N.C. Das, Ultrasonics Sonochem. 39, 577 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Mahyari, J.N. Gavgani, Res. Chem. Intermed. 44, 5 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Ganguly, P. Das, M. Bose, S. Mondal, A.K. Das, N.C. Das, Sens. Actuators B 252, 735 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, A. Hu, J. Mater. Chem. C 2, 34 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Gonçalves, M. Vila, I. Bdikin, A. De Andrés, N. Emami, R.A. Ferreira, L.D. Carlos, J. Grácio, P.A. Marques, Sci. Rep. 4, 6735 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, A. Hartschuh, ACS Nano 3, 12 (2009)CrossRefGoogle Scholar
  37. 37.
    J.M. Bai, L. Zhang, R.P. Liang, J.D. Qiu, Chem. Eur. J. 19, 12 (2013)Google Scholar
  38. 38.
    P. Routh, S. Das, A. Shit, P. Bairi, P. Das, A.K. Nandi, A.C.S. Appl, Mater. Interfaces 5, 23 (2013)CrossRefGoogle Scholar
  39. 39.
    Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C.M. Li, J. Mater. Chem. 22, 18 (2012)Google Scholar
  40. 40.
    R. Gokhale, P. Singh, Part. Part. Syst. Charact. 31, 4 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Nanoscale 5, 10 (2013)PubMedCentralGoogle Scholar
  42. 42.
    X. Gao, S. Nie, Trends Biotechnol. 21, 9 (2003)CrossRefGoogle Scholar
  43. 43.
    X. Michalet, F. Pinaud, T.D. Lacoste, M. Dahan, M.P. Bruchez, A.P. Alivisatos, S. Weiss, Single Mol. 2, 4 (2001)CrossRefGoogle Scholar
  44. 44.
    A.J. Sutherland, Curr. Opin. Solid State Mater. Sci. 6, 4 (2002)CrossRefGoogle Scholar
  45. 45.
    W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Curr. Opin. Biotechnol. 13, 1 (2002)CrossRefGoogle Scholar
  46. 46.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I. Chen, C.W. Chen, M. Chhowalla, Adv. Mater. 22, 4 (2010)CrossRefGoogle Scholar
  47. 47.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 12 (2010)CrossRefGoogle Scholar
  48. 48.
    J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Chem. Commun. 47, 9 (2011)Google Scholar
  49. 49.
    W.T. Mason, Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-Time Analysis (Elsevier, Academic Press, London, 1999)Google Scholar
  50. 50.
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 6 (2005)CrossRefGoogle Scholar
  51. 51.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 5, 9 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Daehne, U. Resch-Genger, O.S. Wolfbeis, Near-Infrared Dyes for High Technology Applications (Springer, Berlin, 2012)Google Scholar
  53. 53.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 14 (2003)CrossRefGoogle Scholar
  54. 54.
    D.L. Sackett, J. Wolff, Anal. Biochem. 167, 2 (1987)CrossRefGoogle Scholar
  55. 55.
    W.J. Parak, T. Pellegrino, C. Plank, Nanotechnology 16, 2 (2005)CrossRefGoogle Scholar
  56. 56.
    L.W. Miller, Y. Cai, M.P. Sheetz, V.W. Cornish, Nat. Methods 2, 4 (2005)CrossRefGoogle Scholar
  57. 57.
    S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.-H. Choi, ACS Nano 6, 9 (2012)Google Scholar
  58. 58.
    D. Pan, L. Guo, J. Zhang, C. Xi, Q. Xue, H. Huang, J. Li, Z. Zhang, W. Yu, Z. Chen, J. Mater. Chem. 22, 8 (2012)Google Scholar
  59. 59.
    P. Das, M. Bose, A.K. Das, S. Banerjee, N.C. Das, Macromolecular Symposia (Wiley, New York, 2018), p. 1800077Google Scholar
  60. 60.
    N. Mohanty, D. Moore, Z. Xu, T. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nat. Commun. 3, 844 (2012)CrossRefPubMedGoogle Scholar
  61. 61.
    H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 24, 39 (2012)CrossRefGoogle Scholar
  62. 62.
    Q. Feng, Q. Cao, M. Li, F. Liu, N. Tang, Y. Du, Appl. Phys. Lett. 102, 1 (2013)Google Scholar
  63. 63.
    C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, J. Rong, J. Mater. Chem. B 1, 1 (2013)Google Scholar
  64. 64.
    P. Nigam, S. Waghmode, M. Louis, S. Wangnoo, P. Chavan, D. Sarkar, J. Mater. Chem. B 2, 21 (2014)CrossRefGoogle Scholar
  65. 65.
    Y. Shin, J. Park, D. Hyun, J. Yang, J.-H. Lee, J.-H. Kim, H. Lee, Nanoscale 7, 13 (2015)Google Scholar
  66. 66.
    J. Wang, X. Xin, Z. Lin, Nanoscale 3, 8 (2011)Google Scholar
  67. 67.
    M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, J. Mater. Chem. 22, 15 (2012)Google Scholar
  68. 68.
    X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, Chem. Commun. 51, 13 (2015)Google Scholar
  69. 69.
    D.B. Shinde, V.K. Pillai, Chem. Eur. J. 18, 39 (2012)CrossRefGoogle Scholar
  70. 70.
    D.B. Shinde, V.M. Vishal, S. Kurungot, V.K. Pillai, Bull. Mater. Sci. 38, 2 (2015)CrossRefGoogle Scholar
  71. 71.
    H. Jiang, F. Chen, M.G. Lagally, F.S. Denes, Langmuir 26, 3 (2009)Google Scholar
  72. 72.
    J. Lee, K. Kim, W.I. Park, B.-H. Kim, J.H. Park, T.-H. Kim, S. Bong, C.-H. Kim, G. Chae, M. Jun, Nano Lett. 12, 12 (2012)Google Scholar
  73. 73.
    Z. Luo, D. Yang, G. Qi, J. Shang, H. Yang, Y. Wang, L. Yuwen, T. Yu, W. Huang, L. Wang, J. Mater. Chem. A 2, 48 (2014)CrossRefGoogle Scholar
  74. 74.
    L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, Adv. Funct. Mater. 22, 14 (2012)CrossRefGoogle Scholar
  75. 75.
    Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, Y. Park, H. Lee, Small 10, 5 (2014)CrossRefGoogle Scholar
  76. 76.
    J.H. Bang, K.S. Suslick, Adv. Mater. 22, 10 (2010)CrossRefGoogle Scholar
  77. 77.
    S. Zhuo, M. Shao, S.-T. Lee, ACS Nano 6, 2 (2012)CrossRefGoogle Scholar
  78. 78.
    Y. Zhu, G. Wang, H. Jiang, L. Chen, X. Zhang, Chem. Commun. 51, 5 (2015)Google Scholar
  79. 79.
    H.J.H. Fenton, J. Chem. Soc. Trans. 65, 899 (1894)CrossRefGoogle Scholar
  80. 80.
    M. Cheng, W. Ma, J. Li, Y. Huang, J. Zhao, Y.X. Wen, Y. Xu, Environ. Sci. Technol. 38, 5 (2004)Google Scholar
  81. 81.
    K. Ikehata, M.G. El-Din, J. Environ. Eng. Sci. 5, 2 (2006)CrossRefGoogle Scholar
  82. 82.
    R. Bauer, H. Fallmann, Res. Chem. Intermed. 23, 4 (1997)CrossRefGoogle Scholar
  83. 83.
    X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, J. Zhang, ACS Nano 6, 8 (2012)CrossRefGoogle Scholar
  84. 84.
    A. Wojs, P. Hawrylak, Phys. Rev. B 55, 19 (1997)CrossRefGoogle Scholar
  85. 85.
    T. Wehling, E. Şaşıoğlu, C. Friedrich, A. Lichtenstein, M. Katsnelson, S. Blügel, Phys. Rev. Lett. 106, 23 (2011)CrossRefGoogle Scholar
  86. 86.
    X. Yan, X. Cui, L.-S. Li, J. Am. Chem. Soc. 132, 17 (2010)Google Scholar
  87. 87.
    Q. Li, S. Zhang, L. Dai, L.-S. Li, J. Am. Chem. Soc. 134, 46 (2012)Google Scholar
  88. 88.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 6 (1958)CrossRefGoogle Scholar
  89. 89.
    R. Liu, D. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 133, 39 (2011)Google Scholar
  90. 90.
    J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu, K.P. Loh, Nat. Nanotechnol. 6, 4 (2011)CrossRefGoogle Scholar
  91. 91.
    J. Sinclair, D. Dagotto, Solid State II Lecture Notes (University of Tennessee, Knoxville, 2009)Google Scholar
  92. 92.
    P.N. Joshi, S. Kundu, S.K. Sanghi, D. Sarkar, Smart Drug Delivery System (InTech, London, 2016)Google Scholar
  93. 93.
    A. Cayuela, M. Soriano, C. Carrillo-Carrion, M. Valcarcel, Chem. Commun. 52, 7 (2016)CrossRefGoogle Scholar
  94. 94.
    S. Benítez-Martínez, M. Valcárcel, TrAC Trends Anal. Chem. 72, 93 (2015)CrossRefGoogle Scholar
  95. 95.
    B. Wang, S. Zhuo, L. Chen, Y. Zhang, Spectrochim. Acta Part A 131, 384 (2014)CrossRefGoogle Scholar
  96. 96.
    L. Zhang, Z.-Y. Zhang, R.-P. Liang, Y.-H. Li, J.-D. Qiu, Anal. Chem. 86, 9 (2014)Google Scholar
  97. 97.
    C.-L. Huang, C.-C. Huang, F.-D. Mai, C.-L. Yen, S.-H. Tzing, H.-T. Hsieh, Y.-C. Ling, J.-Y. Chang, J. Mater. Chem. B 3, 4 (2015)Google Scholar
  98. 98.
    L.-S. Li, X. Yan, J. Phys. Chem. Lett. 1, 17 (2010)Google Scholar
  99. 99.
    K.A. Ritter, J.W. Lyding, Nat. Mater. 8, 3 (2009)CrossRefGoogle Scholar
  100. 100.
    S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, Adv. Funct. Mater. 22, 22 (2012)Google Scholar
  101. 101.
    S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, ACS Nano 7, 2 (2013)Google Scholar
  102. 102.
    J.W. González, F. Delgado, J. Fernández-Rossier, Phys. Rev. B 87, 8 (2013)CrossRefGoogle Scholar
  103. 103.
    H.-O. Li, T. Tu, G. Cao, L.-J. Wang, G.-C. Guo, G.-P. Guo, New Progress on Graphene Research (InTech, London, 2013)Google Scholar
  104. 104.
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon 50, 12 (2012)Google Scholar
  105. 105.
    F. Yang, M. Zhao, B. Zheng, D. Xiao, L. Wu, Y. Guo, J. Mater. Chem. 22, 48 (2012)Google Scholar
  106. 106.
    M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, J. Mater, Chem. C 2, 34 (2014)Google Scholar
  107. 107.
    H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Angew. Chem. Int. Ed. 49, 26 (2010)CrossRefGoogle Scholar
  108. 108.
    J.R. Santos, M.I. Vasilevskiy, S.A. Filonovich, Phys. Rev. B 78, 24 (2008)Google Scholar
  109. 109.
    X. Wang, W.W. Yu, J. Zhang, J. Aldana, X. Peng, M. Xiao, Phys. Rev. B 68, 12 (2003)Google Scholar
  110. 110.
    F. Jiang, D. Chen, R. Li, Y. Wang, G. Zhang, S. Li, J. Zheng, N. Huang, Y. Gu, C. Wang, Nanoscale 5, 3 (2013)CrossRefGoogle Scholar
  111. 111.
    Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, G. Shi, Phys. Chem. Chem. Phys. 15, 24 (2013)Google Scholar
  112. 112.
    X. Li, S. Zhu, B. Xu, K. Ma, J. Zhang, B. Yang, W. Tian, Nanoscale 5, 17 (2013)Google Scholar
  113. 113.
    D. Pan, C. Xi, Z. Li, L. Wang, Z. Chen, B. Lu, M. Wu, J. Mater. Chem. A 1, 11 (2013)Google Scholar
  114. 114.
    Y. Jing, Y. Zhu, X. Yang, J. Shen, C. Li, Langmuir 27, 3 (2010)Google Scholar
  115. 115.
    J. Jana, T. Aditya, M. Ganguly, S.K. Mehetor, T. Pal, Spectrochim. Acta Part A 188, 551 (2018)CrossRefGoogle Scholar
  116. 116.
    C. Luk, L. Tang, W. Zhang, S. Yu, K. Teng, S. Lau, J. Mater. Chem. 22, 42 (2012)CrossRefGoogle Scholar
  117. 117.
    Z. Wang, J. Xia, C. Zhou, B. Via, Y. Xia, F. Zhang, Y. Li, L. Xia, J. Tang, Colloids Surf. B 112, 192 (2013)CrossRefGoogle Scholar
  118. 118.
    J.K. Kim, S. Bae, Y. Yi, M.J. Park, S.J. Kim, N. Myoung, C.-L. Lee, B.H. Hong, J.H. Park, Sci. Rep. 5, 11032 (2015)CrossRefGoogle Scholar
  119. 119.
    W. Kwon, Y.-H. Kim, C.-L. Lee, M. Lee, H.C. Choi, T.-W. Lee, S.-W. Rhee, Nano Lett. 14, 3 (2014)CrossRefGoogle Scholar
  120. 120.
    V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, D.S. Chand, J. Am. Chem. Soc. 133, 26 (2011)CrossRefGoogle Scholar
  121. 121.
    D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, W.K. Choi, Nat. Nanotechnol. 7, 7 (2012)CrossRefGoogle Scholar
  122. 122.
    X.T. Zheng, A. Than, A. Ananthanaraya, D.-H. Kim, P. Chen, ACS Nano 7, 7 (2013)Google Scholar
  123. 123.
    Y.-H. Li, L. Zhang, J. Huang, R.-P. Liang, J.-D. Qiu, Chem. Commun. 49, 45 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Nanoscience and TechnologyIndian Institute of TechnologyKharagpurIndia
  2. 2.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia
  3. 3.Materials Science CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations