Advertisement

Facile one-pot solvothermal-assisted synthesis of uniform sphere-like Nb2O5 nanostructures for photocatalytic applications

  • Rajeswari Rathnasamy
  • Pitchai Thangasamy
  • Vanangamudi Aravindhan
  • Punniyakoti Sathyanarayanan
  • Viswanathan AlaganEmail author
Article
  • 37 Downloads

Abstract

Preparation of semiconductor nanomaterials with controlled morphology and uniform porous surface is of great interest for enhanced photocatalytic applications. In the work presented herein, uniform sphere-like niobium pentoxide (Nb2O5) nanostructures were synthesized by a one-pot solvothermal method using ammonium niobate oxalate and octadecylamine as precursor and surfactant, respectively. The synthesized Nb2O5 nanostructures were then employed as photocatalyst for degradation of methylene blue (MB) and rose bengal (RB) dyes under ultraviolet (UV) light. It was found that the prepared Nb2O5 nanostructures could degrade up to 87 % and 62 % of MB and RB dye after irradiation for 90 and 180 min, respectively.

Keywords

Niobium pentoxide Solvothermal method Sphere-like morphology Photocatalyst 

Notes

Acknowledgements

R.R. is very grateful for financial support through the Technical Education Quality Improvement program (TEQIP II), Anna University, BIT Campus, Tiruchirappalli, India.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    S. Suresh, Nanosci. Nanotechnol. 3, 62 (2013)Google Scholar
  2. 2.
    S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capiglia, J. Power Sources 257, 421 (2014)CrossRefGoogle Scholar
  3. 3.
    A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010)CrossRefGoogle Scholar
  4. 4.
    I.A. Rahman, V. Padavettan, J. Nanomater. 2012, 132424 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Quiñones, D. Shoup, G. Behnke, C. Peck, S. Agarwal, R.K. Gupta, J.W. Fagan, K.T. Mueller, R.J. Iuliucci, Q. Wang, Materials 10, 1363 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Kovács, Z. Pap, C. Cotet, V. Cosoveanu, L. Baia, V. Danciu, Materials 8, 1059 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Mondal, A. Sharma, RSC Adv. 6, 83589 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Rathnasamy, V. Alagan, Phys. E Low Dimens. Syst. Nanostruct. 102, 146 (2018)CrossRefGoogle Scholar
  9. 9.
    J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920 (2014)CrossRefGoogle Scholar
  10. 10.
    M.B. Tahir, G. Nabi, M. Rafique, N.R. Khalid, Int. J. Environ. Sci. Technol. 14, 2519 (2017)CrossRefGoogle Scholar
  11. 11.
    G. Nabi, N.R. Qurat-ul-Aain, M.Bilal Khalid, M. Tahir, M. Rafique, S. Rizwan, T. Hussain, A.Majid Iqbal, J. Inorg. Organomet. Polym. 28, 1552 (2018)CrossRefGoogle Scholar
  12. 12.
    M.B. Tahir, M. Sagir, K. Shahzad, J. Hazard. Mater. 363, 205 (2019)CrossRefGoogle Scholar
  13. 13.
    M.B. Tahir, G. Nabi, T. Iqbal, M. Sagir, M. Rafique, Ceram. Int. 44, 6686 (2018)CrossRefGoogle Scholar
  14. 14.
    A.M. Raba, L. Bautista-Ruíz, M.R. Joya, Mater. Res. 19, 1381 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Zhao, X. Zhou, L. Ye, S.C.E. Tsang, Nano Rev. 3, 17631 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Liu, D. Xue, K. Li, Nanoscale Res. Lett. 6, 138 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Liu, N. Gao, M. Liao, X. Fang, Sci. Rep. 5, 7716 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Leitel, O. Stenzel, S. Wilbrandt, D. Gabler, V. Janicki, N. Kaiser, Thin Solid Films 497, 135 (2006)CrossRefGoogle Scholar
  19. 19.
    M.A. Aegerter, M. Schmitt, Y. Guo, Int. J. Photoenergy 4, 1 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Verma, P.K. Singh, Indian J. Chem. 52A, 593 (2013)Google Scholar
  21. 21.
    L. Li, J. Deng, R. Yu, J. Chen, Z. Wang, X. Xing, J. Mater. Chem. A 1, 11894 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Zhao, C. Eley, J. Hu, J.S. Foord, L. Ye, H. He, S.C.E. Tsang, Angew. Chem. Int. Ed. 51, 3846 (2012)CrossRefGoogle Scholar
  23. 23.
    J.K. Dash, L. Chen, M.R. Topka, P.H. Dinolfo, L.H. Zhang, K. Kisslinger, T.M. Lu, G.C. Wang, RSC Adv. 5, 36129 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Li, Q. Xu, E. Uchaker, X. Cao, G. Cao, CrystEngComm 18, 2532 (2016)CrossRefGoogle Scholar
  25. 25.
    R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, K. Kalantar-zadeh, J. Mater. Chem. A 2, 15683 (2014)CrossRefGoogle Scholar
  26. 26.
    T.A. Tabish, F.A. Memon, D.E. Gomez, D.W. Horsell, S. Zhang, Sci. Rep. 8, 1817 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4, 37003 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Stolz, Appl. Microbiol. Biotechnol. 56, 69 (2001)CrossRefGoogle Scholar
  29. 29.
    K.M. Reza, A.S.W. Kurny, F. Gulshan, Appl. Water Sci. 7, 1569 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Molla, M. Sahu, S. Hussain, Sci. Rep. 6, 26034 (2016)CrossRefGoogle Scholar
  31. 31.
    C. Nie, J. Dong, P. Sun, C. Yan, H. Wu, B. Wang, RSC Adv. 7, 36246 (2017)CrossRefGoogle Scholar
  32. 32.
    O.T. Can, M. Kobya, E. Demirbas, M. Bayramoglu, Chemosphere 62, 181 (2006)CrossRefGoogle Scholar
  33. 33.
    J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X.S. Zhao, J. Mater. Chem. 20, 4512 (2010)CrossRefGoogle Scholar
  34. 34.
    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Wen, L. Chen, W. Li, H. Ren, K. Li, B. Wu, H. Hu, K. Xu, Sci. Rep. 8, 9581 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Chithambararaj, N.S. Sanjini, S. Velmathi, A.C. Bose, Phys. Chem. Chem. Phys. 15, 14761 (2013)CrossRefGoogle Scholar
  37. 37.
    A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, J. Phys. Chem. C 115, 22110 (2011)CrossRefGoogle Scholar
  38. 38.
    R. Giovannetti, C.A.D. Amato, M. Zannotti, E. Rommozzi, R. Gunnella, M. Minicucci, A.D. Cicco, Sci. Rep. 5, 17801 (2015)CrossRefGoogle Scholar
  39. 39.
    C. Chen, S. Cao, H. Long, G. Qian, Y. Tsang, L. Gong, W. Yu, Y. Xiao, J. Mater. Sci. Mater. Electron. 26, 3385 (2015)CrossRefGoogle Scholar
  40. 40.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2014)CrossRefGoogle Scholar
  41. 41.
    S. Sathasivam, B.A.D. Williamson, S.A. Althabaiti, A.Y. Obaid, S.N. Basahel, M. Mokhtar, D.O. Scanlon, C.J. Carmalt, I.P. Parkin, ACS Appl. Mater. Interfaces 9, 18031 (2017)CrossRefGoogle Scholar
  42. 42.
    T. Shinohara, M. Yamada, Y. Sato, S. Okuyama, T. Yui, M. Yagi, K. Saito, Sci. Rep. 7, 4913 (2017)CrossRefGoogle Scholar
  43. 43.
    W. Zhao, W. Zhao, G. Zhu, T. Lin, F. Xu, F. Huang, Dalton Trans. 45, 3888 (2016)CrossRefGoogle Scholar
  44. 44.
    R. Georgiev, B. Georgieva, M. Vasileva, P. Ivanov, T. Babeva, Adv. Cond. Matter Phys. 1, 1 (2015).Google Scholar
  45. 45.
    J.K. Dash, L. Chen, M.R. Topka, P.H. Dinolfo, L.H. Zhang, K. Kisslinger, T.M. Lu, G.C. Wang, RSC Adv. 5, 36129 (2015)CrossRefGoogle Scholar
  46. 46.
    S. Ge, H. Jia, H. Zhao, Z. Zheng, L. Zhang, J. Mater. Chem. 20, 3052 (2010)CrossRefGoogle Scholar
  47. 47.
    P. Wen, L. Ai, T. Liu, D. Hu, F. Yao, Mater. Des. 117, 346 (2017)CrossRefGoogle Scholar
  48. 48.
    N. Uekawa, T. Kudo, F. Mori, Y.J. Wu, K. Kakegawa, J. Colloid Interface Sci. 264, 378 (2003)CrossRefGoogle Scholar
  49. 49.
    R. Rathnasamy, R. Thangamuthu, V. Alagan, Res. Chem. Intermed. 44, 1647 (2018)CrossRefGoogle Scholar
  50. 50.
    Y.T. Huang, R. Cheng, P. Zhai, H. Lee, Y.H. Chang, S.P. Feng, Electrochim. Acta 236, 131 (2017)CrossRefGoogle Scholar
  51. 51.
    X. Jin, C. Liu, J. Xu, Q. Wang, D. Chen, RSC Adv. 4, 35546 (2014)CrossRefGoogle Scholar
  52. 52.
    O.F. Lopes, E.C. Paris, C. Ribeiro, Appl. Catal. B Environ. 144, 800 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rajeswari Rathnasamy
    • 1
  • Pitchai Thangasamy
    • 2
  • Vanangamudi Aravindhan
    • 3
  • Punniyakoti Sathyanarayanan
    • 3
  • Viswanathan Alagan
    • 1
    Email author
  1. 1.Department of Physics, University College of EngineeringBharathidasan Institute of Technology (BIT) Campus, Anna UniversityTiruchirappalliIndia
  2. 2.Institute of Chemistry and The Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Centre for Nanotechnology ResearchVellore Institute of TechnologyVelloreIndia

Personalised recommendations