Advertisement

Cu0NPs@CMC: an efficient recoverable nanocatalyst for decarboxylative A3 and A3 couplings under neat condition

  • Xiaoping Liu
  • Xiaobin Tan
  • Yuemin Zhou
  • Yiqun Li
  • Zhubao ZhangEmail author
Article
  • 2 Downloads

Abstract

Copper nanoparticles assembled on carboxymethylcellulose (Cu0NPs@CMC) were successfully synthesized and well characterized by FT-IR, SEM, EDS, TEM, XPS, and ICP-AES. The new prepared nanocatalyst was applied effectively as a heterogeneous catalyst for the synthesis of propargylamines via decarboxylatived A3 and classic A3 reaction under solvent-free condition. A broad spectrum of diversely polysubstituted propargylamines could be obtained in moderate to excellent yields. The present method showed several merits such as easy work-up, short reaction time, additive-free characteristic, solvent-free condition, functional group tolerance, usage of recyclable green and sustainable nanocatalyst.

Graphical abstract

Keywords

Carboxymethylcellulose Copper nanoparticles Decarboxylative A3 reaction A3 reaction Solvent-free condition 

Notes

Acknowledgements

We are grateful to the National Science Foundation of China (No. 21372099) and the Key Laboratory of Functional Molecular Engineering of Guangdong Province (2016kf06) for financial support.

Supplementary material

11164_2019_3795_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2332 kb)

References

  1. 1.
    V.A. Peshkov, O.P. Pereshivko, A.A. Nechaev, A.A. Peshkov, E.V. Van der Eycken, Chem. Soc. Rev. 47, 3861 (2018)CrossRefGoogle Scholar
  2. 2.
    K. Lauder, A. Toscani, N. Scalacci, D. Castagnolo, Chem. Rev. 117, 14091 (2017)CrossRefGoogle Scholar
  3. 3.
    E. Vessally, L. Edjlali, A. Hosseinian, A. Bekhradnia, M.D. Esrafili, RSC Adv. 6, 49730 (2016)CrossRefGoogle Scholar
  4. 4.
    C.E. Meyet, C.H. Larsen, J. Org. Chem. 79, 9835 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Arshadi, E. Vessally, L. Edjlali, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, Beilstein J. Org. Chem. 13, 625 (2017)CrossRefGoogle Scholar
  6. 6.
    B.A. Orit, T. Amit, M.B. Youdim, O. Weinreb, J. Neural Transm. 123, 125 (2016)Google Scholar
  7. 7.
    F.T. Zindo, J. Joubert, S.F. Malan, Future Med. Chem. 7, 609 (2015)CrossRefGoogle Scholar
  8. 8.
    K.B. Aubrecht, M.D. Winemiller, D.B. Collum, J. Am. Chem. Soc. 122, 11084 (2000)CrossRefGoogle Scholar
  9. 9.
    T. Murai, Y. Mutoh, Y. Ohta, M. Murakami, J. Am. Chem. Soc. 126, 5968 (2004)CrossRefGoogle Scholar
  10. 10.
    L. Zani, C. Bolm, Chem. Commun. 41, 4263 (2006)CrossRefGoogle Scholar
  11. 11.
    V.A. Peshkov, O.P. Pereshivko, E.V. Van der Eycken, Chem. Soc. Rev. 41, 3790 (2012)CrossRefGoogle Scholar
  12. 12.
    W.J. Yoo, L. Zhao, C.J. Li, Aldrich. Acta 44, 43 (2011)Google Scholar
  13. 13.
    T.K. Saha, R. Das, ChemistrySelect 3, 12206 (2018)Google Scholar
  14. 14.
    A. Beillard, T.X. Metro, X. Bantreil, J. Martinez, F. Lamaty, Eur. J. Org. Chem. 31, 4642 (2017)CrossRefGoogle Scholar
  15. 15.
    O. Prakash, H. Joshi, U. Kumar, A.K. Sharma, A.K. Singh, Dalton Trans. 44, 1962 (2015)CrossRefGoogle Scholar
  16. 16.
    M.T. Chen, B. Landers, O. Navarro, Org. Biomol. Chem. 10, 2206 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Wei, C.J. Li, J. Am. Chem. Soc. 125, 9584 (2003)CrossRefGoogle Scholar
  18. 18.
    G.A. Price, A.K. Brisdon, K.R. Flower, R.G. Pritchard, P. Quayle, Tetrahedron Lett. 55, 151 (2014)CrossRefGoogle Scholar
  19. 19.
    V.K. Lo, Y. Liu, M.K. Wong, C.M. Che, Org. Lett. 8, 1529 (2006)CrossRefGoogle Scholar
  20. 20.
    P. Li, Y. Zhang, L. Wang, Chem. Eur. J. 15, 2045 (2009)CrossRefGoogle Scholar
  21. 21.
    W.W. Chen, R.V. Nguyen, C.J. Li, Tetrahedron Lett. 50, 2895 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Layek, B. Agrahari, S. Kumari, Anuradha, D.D. Pathak, Catal. Lett. 148, 2675 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Periasamy, P.O. Reddy, A. Edukondalu, M. Dalai, L.M. Alakonda, B. Udaykumar, Eur. J. Org. Chem. 27, 6067 (2014)CrossRefGoogle Scholar
  24. 24.
    E. Ramu, R. Varala, N. Sreelatha, S.R. Adapa, Tetrahedron Lett. 48, 7184 (2007)CrossRefGoogle Scholar
  25. 25.
    E.R. Bonfield, C.J. Li, Org. Biomol. Chem. 5, 435 (2007)CrossRefGoogle Scholar
  26. 26.
    A. Maleki, Helv. Chim. Acta 97, 587 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Jeganathan, A. Dhakshinamoorthy, K. Pitchumani, ACS Sustain. Chem. Eng. 2, 781 (2014)CrossRefGoogle Scholar
  28. 28.
    N. Hussain, M.R. Das, New J. Chem. 41, 12756 (2017)CrossRefGoogle Scholar
  29. 29.
    L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Angew. Chem. Int. Ed. 52, 3741 (2013)CrossRefGoogle Scholar
  30. 30.
    K.S. Sindhu, G. Anilkumar, RSC Adv. 4, 27867 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Grirrane, E. Alvarez, H. Garcia, A. Corma, Angew. Chem. Int. Ed. 53, 7253 (2014)CrossRefGoogle Scholar
  32. 32.
    V.S. Kashid, M.S. Balakrishna, Catal. Commun. 103, 78 (2018)CrossRefGoogle Scholar
  33. 33.
    Q. Zhang, J.X. Chen, W.X. Gao, J.C. Ding, H.Y. Wu, Appl. Organomet. Chem. 24, 809 (2010)CrossRefGoogle Scholar
  34. 34.
    J.R. Cammarata, R. Rivera, F. Fuentes, Y. Otero, E. Ocando-Mavárez, A. Arce, J.M. Garcia, Tetrahedron Lett. 58, 4078 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Ju, C.J. Li, R.S. Varma, QSAR Comb. Sci. 23, 891 (2004)CrossRefGoogle Scholar
  36. 36.
    N. Bahri-Laleh, S. Sadjadi, Res. Chem. Intermed. 44, 6351 (2018)CrossRefGoogle Scholar
  37. 37.
    J. Safaei-Ghomi, S.H. Nazemzadeh, H. Shahbazi-Alavi, Res. Chem. Intermed. 43, 7375 (2017)CrossRefGoogle Scholar
  38. 38.
    X. Liu, B. Lin, Z. Zhang, H. Lei, Y. Li, RSC Adv. 6, 94399 (2016)CrossRefGoogle Scholar
  39. 39.
    P. Kaur, B. Kumar, V. Kumar, R. Kumar, Tetrahedron Lett. 59, 1986 (2018)CrossRefGoogle Scholar
  40. 40.
    M.J. Albaladejo, F. Alonso, Y. Moglie, M. Yus, Eur. J. Org. Chem. 16, 3093 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Frindy, A. El Kadib, M. Lahcini, A. Primo, H. García, Catal. Sci. Technol. 6, 4306 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Gholinejad, F. Saadati, S. Shaybanizadeh, B. Pullithadathil, RSC Adv. 6, 4983 (2016)CrossRefGoogle Scholar
  43. 43.
    V.G. Ramu, A. Bordoloi, T.C. Nagaiah, W. Schuhmann, M. Muhler, C. Cabrele, Appl. Catal. A 431–432, 88 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Kidwai, V. Bansal, N.K. Mishra, A. Kumar, S. Mozumdar, Synlett 2007, 1581 (2007)CrossRefGoogle Scholar
  45. 45.
    D.S. Ermolat’ev, H. Feng, G. Song, E.V. Van der Eycken, Eur. J. Org. Chem. 24, 5346 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Choi, J. Lim, F.M. Irudayanathan, H. Kim, J. Park, S.B. Yu, Y. Jang, G.C.E. Raja, K.C. Nam, J. Kim, S. Lee, Asian J. Org. Chem. 5, 770 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Lim, K. Park, A. Byeun, S. Lee, Tetrahedron Lett. 55, 4875 (2014)CrossRefGoogle Scholar
  48. 48.
    H. Feng, D.S. Ermolat’ev, G. Song, E.V. Van der Eycken, Org. Lett. 14, 1942 (2012)CrossRefGoogle Scholar
  49. 49.
    H. Feng, D.S. Ermolat’ev, G. Song, E.V. Van der Eycken, J. Org. Chem. 76, 7608 (2011)CrossRefGoogle Scholar
  50. 50.
    P. Zhao, H. Feng, H. Pan, Z. Sun, M. Tong, Org. Chem. Front. 4, 37 (2017)CrossRefGoogle Scholar
  51. 51.
    T. Palani, K. Park, M.R. Kumar, H.M. Jung, S. Lee, Eur. J. Org. Chem. 26, 5038 (2012)CrossRefGoogle Scholar
  52. 52.
    U. Gulati, U.C. Rajesh, D.S. Rawat, Tetrahedron Lett. 57, 4468 (2016)CrossRefGoogle Scholar
  53. 53.
    U.C. Rajesh, U. Gulati, D.S. Rawat, ACS Sustain. Chem. Eng. 4, 3409 (2016)CrossRefGoogle Scholar
  54. 54.
    U. Gulati, U.C. Rajesh, N. Bunekar, D.S. Rawat, ACS Sustain. Chem. Eng. 5, 4672 (2017)CrossRefGoogle Scholar
  55. 55.
    M.N. Nadagouda, R.S. Varma, Biomacromol 8, 2762 (2007)CrossRefGoogle Scholar
  56. 56.
    J. Xiao, Z. Lu, Y. Li, Ind. Eng. Chem. Res. 54, 790 (2015)CrossRefGoogle Scholar
  57. 57.
    Z. Zhang, P. Song, J. Zhou, Y. Chen, B. Lin, Y. Li, Ind. Eng. Chem. Res. 55, 12301 (2016)CrossRefGoogle Scholar
  58. 58.
    B. Lin, X. Liu, Z. Zhang, Y. Chen, X. Liao, Y. Li, J. Colloid Interf. Sci. 497, 134 (2017)CrossRefGoogle Scholar
  59. 59.
    Z. Zhang, Y. Zhang, X. Liu, B. Shen, T. Zhang, Y. Li, Appl. Organomet. Chem. 31, e3912 (2017)Google Scholar
  60. 60.
    Y. Chen, T. Zhang, D. Wang, J. Zhou, Y. Zhang, Y. Li, J. Chem. Sci. 129, 421 (2017)CrossRefGoogle Scholar
  61. 61.
    F. He, D. Zhao, J. Liu, C.B. Roberts, Ind. Eng. Chem. Res. 46, 29 (2007)CrossRefGoogle Scholar
  62. 62.
    J. Liu, F. He, E. Durham, D. Zhao, C.B. Roberts, Langmuir 24, 328 (2008)CrossRefGoogle Scholar
  63. 63.
    K. Wang, L. Yang, W. Zhao, L. Cao, Z. Sun, F. Zhang, Green Chem. 19, 1949 (2017)CrossRefGoogle Scholar
  64. 64.
    K.R. Reddy, N.S. Kumar, B. Sreedhar, M.L. Kantam, J. Mol. Catal. A Chem. 252, 136 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xiaoping Liu
    • 1
  • Xiaobin Tan
    • 1
  • Yuemin Zhou
    • 1
  • Yiqun Li
    • 1
    • 2
  • Zhubao Zhang
    • 1
    Email author
  1. 1.Department of ChemistryJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations