Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3155–3164 | Cite as

Cisplatin-modified isonicotinic acid as a potential linker in bio-MOFs: synthesis and characterization

  • Venansia Avelia Rosari
  • Witri Wahyu LestariEmail author
  • Maulidan Firdaus
Article
  • 40 Downloads

Abstract

The platinum derivative cisplatin is widely used against many types of cancers effectively. However, cisplatin has limitations such as toxicity, resistances, and being thermally labile, non-volatile, and highly insoluble. To overcome these limitations, cisplatin with platinum(II) as metal centers needs to be modified to platinum(IV). Modification of platinum(IV) of cisplatin ligated to an organic ligand in the axial position could be a strategy to reduce its toxicity and increase the lifetime in blood when administered as an oral prodrug as an anti-cancer agent. The complex also has potential to be employed as a linker in bio-metal–organic frameworks (bioMOFs) synthesis and has good stability. Cisplatin-modified ligand also has a large size which can affect to the pore size on bioMOFs. Isonicotinic acid is a pyridine derivative with pyridine and carboxyl as an active group that can make coordination with metal ions on bioMOF assemblies. In this study, a simple and efficient method for the synthesis of a novel cisplatin-modified isonicotinic acid, nicoplatin, was reported. A substitution reaction possibly occurs on the axial position of oxoplatin by isonicotinic acid ligand. The obtained compound was fully characterized with FTIR, 1H-NMR, 13C-NMR, ESI–MS  and elemental analyses.

Graphical abstract

Keywords

Nicoplatin Cisplatin derivatives Nicotinic acid chloride BioMOF 

Notes

Acknowledgements

This work was supported by the Erasmus + Mobility Programme associated with the Institute für Anorganische Chemie Universität Leipzig Germany and Ministry of Research, Technology and Higher Education of Republic Indonesia  (RISTEK DIKTI) in the scheme International Research Collaboration (PKLN) project number 474/UN27.21/PP/2018. The authors wish to thank Sara Durini PhD, Rafaella Precker MSc and Prof. Dr. Dr. hc. mult. Evamarie Hey-Hawkins for their helpful assistance and suggestions during research at the Institute für Anorganische Chemie Universität Leipzig Germany.

Supplementary material

11164_2019_3784_MOESM1_ESM.docx (99 kb)
Supplementary material 1 (DOCX 99 kb)

References

  1. 1.
    D. Adkins, J. Ley, L. Michel, T.M. Wildes, W. Thorstad, H.A. Gay, M. Daly, J. Rich, R. Paniello, R. Uppaluri, R. Jackson, K. Trinkaus, B. Nussenbaum, Oral Oncol. 61, 1 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Scarano, P. de Souza, M.H. Stenzel, Biomater. Sci. 3, 163 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Escola, M. Crespo, C. Lopez, J. Quirante, A. Jayaraman, I.H. Polat, J. Badia, L. Baldoma, M. Cascante, Bioorg. Med. Chem. 24, 5804 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Varbanov, S.M. Valiahdi, A.A. Legin, M.A. Jakupec, A. Roller, M. Galanski, B.K. Keppler, Eur. J. Med. Chem. 46, 5456 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Raveendran, J.P. Braude, E. Wexselblatt, V. Novohradsky, O. Stuchlikova, V. Brabec, V. Gandin, D. Gibson, Chem. Sci. 7, 2381 (2016)CrossRefGoogle Scholar
  6. 6.
    Q. Cheng, H. Shi, H. Wang, Y. Min, J. Wang, Y. Liu, Chem. Commun. 50, 7427 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Cheng, H. Shi, H. Wang, J. Wang, Y. Liu, Metallomics. 8, 672 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Xu, H. Shimakoshi, Y. Hisaeda, J. Organomet. Chem. 782, 89 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Yin, J. Choi, A.C.K. Yip, Catal. Today 265, 203 (2016)CrossRefGoogle Scholar
  10. 10.
    P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Coord. Chem. Rev. 307, 237 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Jing, X. Haitao, Q. Jingsi, X. Zhen-liang, Mater. Lett. 168, 203 (2016)CrossRefGoogle Scholar
  12. 12.
    C. He, K. Lu, D. Liu, W. Lin, J. Am. Chem. Soc. 136, 5181 (2014)CrossRefGoogle Scholar
  13. 13.
    R.C. Huxford, J.D. Rocca, W. Lin, Chem. Biol. 14, 262 (2010)Google Scholar
  14. 14.
    M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Coord. Chem. Rev. 307, 342 (2016)CrossRefGoogle Scholar
  15. 15.
    J.D. Rocca, D. Liu, W. Lin, Acc. Chem. Res. 44, 957 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Wang, K. Lu, M. Ahmad, C. Sun, L. Xing, W. Lin, J. Am. Chem. Soc. 136, 6171 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Abazari, A.R. Mahjoub, A.M.Z. Slawin, C.L. Carpenter-Warren, Ultrason. Sonochem. 42, 594 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Filippousi, S. Turner, K. Leus, P.I. Siafaka, E.D. Tseligka, M. Vandichel, S.G. Nanaki, I.S. Vizirianakis, D.N. Bikiaris, P.V.D. Voort, G.V. Tendeloo, Int. J. Pharm. 509, 208 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Zhang, Q. Zou, G. Ma, X. Yan, Adv. Mater. 28, 3669 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, Q. Peng, Sci. China Mater. 61, 728 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, C. Hou, T. Jiao, J. Song, X. Zhang, R. Xing, J. Zhou, L. Zhang, Q. Peng, Nanomateials 8, 35 (2018)CrossRefGoogle Scholar
  22. 22.
    C. Wang, S. Sun, L. Zhang, J. Yin, T. Jiao, L. Zhang, Y. Xu, J. Zhou, Q. Peng, Colloid Surf. A Physicochem. Eng. Asp. 561, 283 (2019)CrossRefGoogle Scholar
  23. 23.
    C.Y. Sun, C. Qin, X.L. Wang, Z.M. Su, Expert Opin. Drug Deliv. 10, 89 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 45, 5974 (2006)CrossRefGoogle Scholar
  25. 25.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1252 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Babarao, J. Jiang, J. Phys. Chem. C 113, 18287 (2009)CrossRefGoogle Scholar
  27. 27.
    K.A. Mocniak, I. Kubajewska, D.E.M. Spilllane, G.R. Williams, R.E. Morris, RSC Adv. 5, 83648 (2015)CrossRefGoogle Scholar
  28. 28.
    C.-Y. Sun, C. Qin, X.-L. Wang, Z.-M. Su, Expert Opin. Drug Deliv. 10, 89 (2013)CrossRefGoogle Scholar
  29. 29.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 9, 172 (2010)CrossRefGoogle Scholar
  30. 30.
    S.W. Jaros, M. Fátima, C. Guedes da Silva, M. Florek, M.C. Oliveira, P. Smolénski, A.J.L. Pombeiro, A.M. Kirillov, Cryst. Growth Des. 14, 5408 (2014)CrossRefGoogle Scholar
  31. 31.
    S.W. Jaros, M. Fátima, C. Guedes da Silva, J. Król, M.C. Oliveira, P. Smolénski, A.J.L. Pombeiro, A.M. Kirillov, Inorg. Chem. 55, 1486 (2016)CrossRefGoogle Scholar
  32. 32.
    S.W. Jaros, P. Smoleński, M. Fátima, C. Guedes da Silva, M. Florek, J. Król, Z. Staroniewicz, A.J.L. Pombeiro, A.M. Kirillov, CrystEngComm 15, 8060 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Rojas, T. Devic, P. Horcajada, J. Mater. Chem. B 5, 2560 (2017)CrossRefGoogle Scholar
  34. 34.
    C. He, D. Liu, W. Lin, Biomaterials 36, 124 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Arzuman, P. Beale, J.Q. Yu, F. Huq, Anticancer Res. 35, 2783 (2015)Google Scholar
  36. 36.
    A. Barattucci, M.R. Plutino, C. Faggi, P. Bonaccorsi, L.M. Scolaro, M.C. Aversa, Eur. J. Inorg. Chem. 2013, 3412 (2013)CrossRefGoogle Scholar
  37. 37.
    K.R. Barnes, A. Kutikov, S.J. Lippard, Chem. Biol. 11, 557 (2004)CrossRefGoogle Scholar
  38. 38.
    A.R. Battle, R. Choi, D.E. Hibbs, W.W. Hambley, Inorg. Chem. 45, 6317 (2006)CrossRefGoogle Scholar
  39. 39.
    J. Hu, T.-M. Wu, H.-Z. Li, Z.-P. Zuo, Y.-L. Zhao, L. Yang, Bioorg. Med. Chem. Lett. 27, 3591 (2017)CrossRefGoogle Scholar
  40. 40.
    S.-X. Guo, D.N. Mason, S.A. Turland, E.T. Lawrenz, L.C. Kelly, G.D. Fallon, B.M. Gatehouse, A.M. Bond, G.B. Deacon, A.R. Battle, T.W. Hambley, S. Rainone, L.K. Wenster, C. Cullinane, J. Inorg. Biochem. 115, 226 (2012)CrossRefGoogle Scholar
  41. 41.
    N.S. Sommerfeld, D. Strohhofer, K. Cseh, S. Treiner, M.A. Jakupec, G. Koellensperger, M. Galanski, B.K. Keppler, Eur. J. Inorg. Chem. 2017, 4049 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Roy, J.A. Westmass, K.D. Hagen, G.P. van Wezel, J. Reedijk, J. Inorg. Biochem. 103, 1288 (2009)CrossRefGoogle Scholar
  43. 43.
    W. Neumann, B.C. Crews, M.B. Sárosi, C.M. Daniel, K. Ghebreselasie, M.S. Scholz, L.J. Marnett, E. Hey-Hawkins, Chem. Med. Chem. 10, 183 (2015)CrossRefGoogle Scholar
  44. 44.
    R.K. Pathak, S. Marrache, J.H. Choi, T.B. Berding, S. Dhar, Angew. Chem. Int. Ed. 53, 1963 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Magister of Chemistry ProgrammeUniversitas Sebelas MaretKentinganIndonesia
  2. 2.Research Group of Porous Materials for Sustainability, Chemistry DepartmentSebelas Maret UniversitySurakartaIndonesia
  3. 3.Chemistry DepartmentSebelas Maret UniversitySurakartaIndonesia

Personalised recommendations