Advertisement

Influence of MgO/CeO2 ratio on CO2-oxidative transformation of C2H6 to C2H4 over highly active and stable Cr/MgO(x)–CeO2(100−x) nanocatalysts

  • Nima Ahmadkhani
  • Mohammad HaghighiEmail author
  • Parisa Taghavinezhad
Article
  • 6 Downloads

Abstract

Cr/MgO(x)–CeO2(100−x) nanocatalysts were synthesized by a coprecipitation method and characterized by X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM), energy-dispersive x-ray (EDX) spectroscopy, diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) analysis. The effect of ceria addition on their physicochemical characteristics was investigated, and the results were correlated with their catalytic performance in oxidative dehydrogenation of ethane. A decrease in the size of the metal particles was found when adding a suitable content of ceria to the support. Crystalline Cr2O3 was not found in the calcined samples, indicating good dispersion of Cr species on the support. All samples showed nanosized particles with uniform morphology, with the best surface morphology for the Cr/MgO(50)–CeO2(50) sample, on which the particle distribution mainly lay in the range of 40–60 nm. Variation of the amount of Ce in the support led to an enhancement of the Cr6+/Cr3+ ratio, with the highest value for the Cr/MgO(50)–CeO2(50) sample. This catalyst effectively dehydrogenated ethane to ethylene with CO2 at 700 °C even after 5 h on-stream, giving 42.76 % ethylene yield.

Keywords

Impregnation Precipitation Cr/MgO–CeO2 Dehydrogenation Ethane Ethylene 

Notes

Acknowledgements

Financial support from the Sahand University of Technology is gratefully acknowledged. The work has also been supported by the Iran Nanotechnology Initiative Council.

Supplementary material

11164_2019_3782_MOESM1_ESM.doc (162 kb)
Supplementary material 1 (DOC 162 kb)

References

  1. 1.
    S. Asghari, M. Haghighi, P. Taghavinezhad, Microporous Mesoporous Mater. 279 (2019)Google Scholar
  2. 2.
    P. Taghavinezhad, M. Haghighi, R. Alizadeh, Microporous Mesoporous Mater. 261, 63 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Machli, E. Heracleous, A.A. Lemonidou, Appl. Catal. A Gen. 236, 1 (2002)CrossRefGoogle Scholar
  4. 4.
    L. Basini, S. Cimino, A. Guarinoni, G. Russo, V. Arca, Chem. Eng. J. 207–208, 473 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Lin, C.A. Hoel, W.M.H. Sachtler, K.R. Poeppelmeier, E. Weitz, J. Catal. 265, 1 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Watanabe, Y. Hondo, K. Mukawa, C. Fukuhara, E. Kikuchi, Y. Sekine, J. Mol. Catal. A Chem. 377, 74 (2013)CrossRefGoogle Scholar
  7. 7.
    F. Liang, G. He, L. Jia, H. Jiang, Sep. Purif. Technol. 211 (2019)Google Scholar
  8. 8.
    V.P. Haribal, L.M. Neal, F. Li, Energy 119, 1024 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Boukhlouf, A. Barama, R. Benrabaa, J.G. Caballero, A. Löfberg, E. Bordes-Richard, C. R. Chim. 20, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    Z. Skoufa, E. Heracleous, A.A. Lemonidou J. Catal. 322 (2015)Google Scholar
  11. 11.
    H. Zhu, H. Dong, P. Laveille, Y. Saih, V. Caps, J.-M. Basset, Catal. Today 228, 58 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Wu, G. Li, B. Chu, L. Dong, Z. Tong, H. He, L. Zhang, M. Fan, B. Li, L. Dong, Ind. Eng. Chem. Res. 57, 46 (2018)Google Scholar
  13. 13.
    P. Taghavinezhad, M. Haghighi, R. Alizadeh, Korean J. Chem. Eng. 34, 5 (2017)CrossRefGoogle Scholar
  14. 14.
    F. Rahmani, M. Haghighi, M. Amini, J. Ind. Eng. Chem. 31, 142 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Rahmani, M. Haghighi, S. Mahboob, Ultrason. Sonochem. 33, 150 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Talati, M. Haghighi, F. Rahmani, RSC Adv. 6, 50 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Delir Kheyrollahi Nezhad, M. Haghighi, N. Jodeiri, F. Rahmani, J. Sol-Gel Sci. Technol. 80, 2 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Rahmani, M. Haghighi, B. Mohammadkhani, Microporous Mesoporous Mater. 242, 34 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Qiao, V.N. Kalevaru, J. Radnik, A. Martin, Catal. Today 264 (2016)Google Scholar
  20. 20.
    R. Koirala, R. Buechel, S.E. Pratsinis, A. Baiker, Appl. Catal. A Gen. 527, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    D. Mukherjee, S.-E. Park, B.M. Reddy J. CO2 Utilization 16 (2016)Google Scholar
  22. 22.
    V.R.B. Gurram, S.S. Enumula, K.S. Koppadi, R.R. Chada, D.R. Burri, S.R.R. Kamaraju, Catal. Commun. 118, 1 (2019)CrossRefGoogle Scholar
  23. 23.
    J. Liu, J. Li, J. Rong, C. Liu, Z. Dai, J. Bao, Z. Da, H. Zheng, Appl. Surf. Sci. 464, 146 (2019)CrossRefGoogle Scholar
  24. 24.
    E. Asghari, M. Haghighi, F. Rahmani J. Mol. Catal. A Chem. 418 (2016)Google Scholar
  25. 25.
    F. Rahmani, M. Haghighi, RSC Adv. 6, 92 (2016)Google Scholar
  26. 26.
    F. Rahmani, M. Haghighi, Korean J. Chem. Eng. 33, 9 (2016)Google Scholar
  27. 27.
    Y. Cheng, F. Zhang, Y. Zhang, C. Miao, W. Hua, Y. Yue, Z. Gao, Chin. J. Catal. 36, 8 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Dogu, K.E. Meyer, A. Fuller, S. Gunduz, D.J. Deka, N. Kramer, A.C. Co, U.S. Ozkan, Appl. Catal. B Environ. 227, 5 (2018)CrossRefGoogle Scholar
  29. 29.
    T. Liu, J. Qian, Y. Yao, Z. Shi, L. Han, C. Liang, B. Li, L. Dong, M. Fan, L. Zhang, Mol. Catal. 430 (2017)Google Scholar
  30. 30.
    P. Brussino, J.P. Bortolozzi, V.G. Milt, E.D. Banús, M.A. Ulla, Catal. Today 273 (2016)Google Scholar
  31. 31.
    B. Chu, H. An, T.A. Nijhuis, J.C. Schouten, Y. Cheng, J. Catal. 329, 471 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Solsona, P. Concepción, S. Hernández, B. Demicol, J.M.L. Nieto, Nieto Catal. Today 180, 1 (2012)CrossRefGoogle Scholar
  33. 33.
    I.V. Mishakov, E.V. Ilyina, A.F. Bedilo, A.A. Vedyagin, React. Kinet. Catal. Lett. 97, 2 (2009)CrossRefGoogle Scholar
  34. 34.
    L.M. Neal, S. Yusuf, J.A. Sofranko, F. Li, Energy Technol. 4, 10 (2016)Google Scholar
  35. 35.
    K. Fukudome, T. Suzuki, Catal. Surv. Asia 19, 3 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Li, A.C. van Veen, Appl. Catal. B Environ. 237 (2018)Google Scholar
  37. 37.
    K. Zha, S. Cai, H. Hu, H. Li, T. Yan, L. Shi, D. Zhang, J. Phys. Chem. C 121, 45 (2017)CrossRefGoogle Scholar
  38. 38.
    L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, Catal. Sci. Technol. 7, 2 (2017)CrossRefGoogle Scholar
  39. 39.
    L. Yan, Y. Liu, H. Hu, H. Li, L. Shi, D. Zhang, ChemCatChem 8, 13 (2016)Google Scholar
  40. 40.
    G. Raju, B.M. Reddy, S.-E. Park J. CO2 Util. 5 (2014)Google Scholar
  41. 41.
    V.-K. Nguyen, J.-H. Park, C.-H. Shin, Korean J. Chem. Eng. 31, 4 (2014)Google Scholar
  42. 42.
    Y. Liu, L. Luo, Y. Gao, W. Huang, Appl. Catal. B Environ. 197 (2016)Google Scholar
  43. 43.
    V.-K. Nguyen, J.-H. Park, C.-H. Shin, React. Kinet. Mech. Catal. 107, 1 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Deng, Q. Huang, X. Zhu, Q. Hu, W. Su, J. Qian, L. Dong, B. Li, M. Fan, C. Liang Appl. Surf. Sci., 389 (2016)Google Scholar
  45. 45.
    A. Klisińska, K. Samson, I. Gressel, B. Grzybowska, Appl. Catal. A Gen. 309, 1 (2006)CrossRefGoogle Scholar
  46. 46.
    B. Tope, Y. Zhu, J.A. Lercher, Catal. Today 123, 1 (2007)CrossRefGoogle Scholar
  47. 47.
    L. Zhang, J. Deng, H. Dai, C.T. Au, Appl. Catal. A Gen. 354, 1 (2009)CrossRefGoogle Scholar
  48. 48.
    M. Behrens, D. Brennecke, F. Girgsdies, S. Kißner, A. Trunschke, N. Nasrudin, S. Zakaria, N.F. Idris, S.B.A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, R. Schlögl, Appl. Catal. A Gen. 392, 1 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Khaddar-Zine, A. Ghorbel, C. Naccache, J. Mol. Catal. A Chem. 150, 1 (1999)CrossRefGoogle Scholar
  50. 50.
    R.L. Puurunen, B.M. Weckhuysen, J. Catal. 210, 2 (2002)CrossRefGoogle Scholar
  51. 51.
    P. Michorczyk, J. Ogonowski, K. Zeńczak, J. Mol. Catal. A Chem. 349, 1 (2011)CrossRefGoogle Scholar
  52. 52.
    Y. Peng, C. Wang, J. Li Appl. Catal. B Environ. 144 (2014)Google Scholar
  53. 53.
    B.M. Reddy, S.-C. Lee, D.-S. Han, S.-E. Park, Appl. Catal. B Environ. 87, 3 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Chemical Engineering FacultySahand University of TechnologySahand New Town, TabrizIran
  2. 2.Reactor and Catalysis Research Center (RCRC)Sahand University of TechnologySahand New Town, TabrizIran

Personalised recommendations