Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3107–3121 | Cite as

Imine-bridged periodic mesoporous organosilica as stable high-activity catalytic for Knoevenagel reaction in aqueous medium

  • Zechun Sun
  • Yiran Wang
  • Zhiruo Zhang
  • Fengxia ZhuEmail author
  • Pusu ZhaoEmail author
  • Guisheng LiEmail author
  • Fengfeng Shao
  • Jiahui Rui
Article
  • 60 Downloads

Abstract

An imine-functionalized mesoporous solid base catalyst (BA@BE-PMO) was prepared by template agent-directed self-assembly condensation of bis[3-(triethoxysilyl)propyl]amine and 1,2-bis(triethoxysilyl)ethane in acid solution. The imine groups with catalytic activity were integrally embedded into mesopore walls of as-made BA@BE-PMO. In Knoevenagel reactions in aqueous medium, the BA@BE-PMO catalyst exhibited better catalytic activity than imine-functionalized SBA-15 catalyst synthesized using the traditional co-condensation method, which can be attributed to the pore surface with strong hydrophobicity originating from –CH2CH2– group fragments incorporated into pore walls. The strong hydrophobicity of the surface facilitates adsorption and diffusion of organic compounds on the catalyst surface in reactions in aqueous medium. Moreover, it exhibited comparable catalytic activity to dipropylamine homogeneous base catalyst because of the uniform dispersion of imine group active sites. The BA@BE-PMO catalyst could also be recovered and reused in up to five runs without significant loss in activity without any negative environmental impact.

Keywords

Imine-bridged PMO Solid base catalyst Knoevenagel reaction in aqueous medium Green catalysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51872109, 21677099, 21876112), Natural Science Foundation of Jiangsu Provincial Department of Education (17KJA150002, 15KJA150003), and College Students’ Practical Innovation Project of Jiangsu Province (201810323009Z).

References

  1. 1.
    C. Palomo, M. Oiarbide, A. Laso, Eur. J. Org. Chem. 2007, 2561 (2010)CrossRefGoogle Scholar
  2. 2.
    N. Mase, T. Horibe, Org. Lett. 15, 1854 (2013)CrossRefGoogle Scholar
  3. 3.
    Z. Ren, W.G. Cao, W.Q. Tong, Synth. Commun. 32, 1947 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Bigi, C. Quarantelli, Curr. Org. Synth. 9, 31 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Ono, J. Catal. 216, 406 (2003)CrossRefGoogle Scholar
  6. 6.
    L.F. Tietze, Chem. Rev. 96, 115 (1996)CrossRefGoogle Scholar
  7. 7.
    G. Busca, Ind. Eng. Chem. Res. 48, 6486 (2009)CrossRefGoogle Scholar
  8. 8.
    U.M. Lindstrom, Chem. Rev. 102, 2751 (2002)CrossRefGoogle Scholar
  9. 9.
    A.N. Marziale, J. Schluer, J. Eppinger, Tetrahedron Lett. 52, 6355 (2011)CrossRefGoogle Scholar
  10. 10.
    C.J. Li, L. Chen, Chem. Soc. Rev. 35, 68 (2006)CrossRefGoogle Scholar
  11. 11.
    W.J. Le, H.F. Lu, J.T. Zhou, H.L. Cheng, Y.H. Gao, Tetrahedron Lett. 54, 5370 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Fang, Z.H. Fei, Z.L. Liu, Amino Acids 39, 911 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Ying, L.M. Wang, L.L. Wang, X.Z. Chen, W.D. Ye, J. Chem. Res. 34, 30 (2010)CrossRefGoogle Scholar
  14. 14.
    X.W. You, H. Yu, M.G. Wang, J. Wu, Z.C. Shang, Lett. Org. Chem. 9, 19 (2012)CrossRefGoogle Scholar
  15. 15.
    P.Y. Li, Y.Y. Liu, N. Ma, W.Q. Zhang, Catal. Lett. 148, 813 (2018)CrossRefGoogle Scholar
  16. 16.
    Y.Q. Cai, Y.Q. Peng, G.H. Song, Catal. Lett. 109, 61 (2006)CrossRefGoogle Scholar
  17. 17.
    K. Isobe, T. Hoshi, T. Suzuki, H. Hagiwara, Mol. Divers. 9, 317 (2005)CrossRefGoogle Scholar
  18. 18.
    F. Zhu, X. Sun, F. Lou, L. An, P. Zhao, Catal. Lett. 145, 1072 (2015)CrossRefGoogle Scholar
  19. 19.
    X.Z. Dong, Y.H. Hui, S.L. Xie, P. Zhang, G.P. Zhou, Z.F. Xie, RSC Adv. 3, 3222 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Shiri, M. Kazemi, Res. Chem. Intermed. 43, 4813 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Ghandi, M.K. Miraki, I. Radfar, E. Yazdani, A. Heydari, ChemistrySelect 3, 1787 (2018)CrossRefGoogle Scholar
  22. 22.
    J.P. Huang, C.M. Li, L.L. Tao, H.L. Zhu, G. Hu, J. Mol. Struct. 1146, 853 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Gilanizadeh, B. Zeynizadeh, Res. Chem. Intermed. 44, 6053 (2018)CrossRefGoogle Scholar
  24. 24.
    F. Zhu, D. Yang, F. Zhang, H. Li, J. Mol. Catal. A Chem. 363–364, 387 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Cheng, D. Lu, B. Shen, Y. Liu, J. Lei, L. Wang, J. Zhang, M. Matsuoka, Microporous Mesoporous Mater. 226, 79 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Wang, C. Cheng, S. Tapas, J. Lei, M. Matsuoka, J. Zhang, F. Zhang, J. Mater. Chem. A 3, 13357 (2015)CrossRefGoogle Scholar
  27. 27.
    J.L. Spenik, L.J. Shadle, R.W. Breault, J.S. Hoffman, M.L. Gray, Ind. Eng. Chem. Res. 54, 5388 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Lei, L. Yang, D. Lu, X. Yan, C. Cheng, Y. Liu, L. Wang, J. Zhang, Adv. Opt. Mater. 3, 57 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Lei, L. Wang, J. Zhang, Chem. Commun. 46, 8445 (2010)CrossRefGoogle Scholar
  30. 30.
    F.X. Zhu, W. Wang, H.X. Li, J. Am. Chem. Soc. 133, 11632 (2011)CrossRefGoogle Scholar
  31. 31.
    J.R. Matos, M. Kruk, L.P. Mercuri, M. Jaroniec, T. Asefa, N. Coombs, G.A. Ozin, T. Kamiyama, J. Terasaki, Chem. Mater. 14, 1903 (2002)CrossRefGoogle Scholar
  32. 32.
    F. Fakhfakh, L. Baraket, J.M. Fraile, J.A. Mayoral, A. Ghorbel, Korean J. Chem. Eng. 31, 1707 (2014)CrossRefGoogle Scholar
  33. 33.
    E.Y. Jeong, S.E. Park, Res. Chem. Intermed. 38, 1237 (2012)CrossRefGoogle Scholar
  34. 34.
    F.X. Zhu, L.L. Zhu, X.J. Sun, L.T. An, P.S. Zhao, H.X. Li, New J. Chem. 38, 4594 (2014)CrossRefGoogle Scholar
  35. 35.
    J.L. Huang, F.X. Zhu, W.H. He, F. Zhang, W. Wang, H.X. Li, J. Am. Chem. Soc. 132, 1492 (2010)CrossRefGoogle Scholar
  36. 36.
    X.S. Yang, F.X. Zhu, J.L. Huang, F. Zhang, H.X. Li, Chem. Mater. 21, 4925 (2009)CrossRefGoogle Scholar
  37. 37.
    F.X. Zhu, P.S. Zhao, X.J. Sun, L.T. An, Y. Deng, J.M. Wu, J. Solid State Chem. 255, 70 (2017)CrossRefGoogle Scholar
  38. 38.
    N. Suriyanon, P. Punyapalakul, C. Ngamcharussrivichai, Mater. Chem. Phys. 149–150, 701 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, J. Phys. Chem. B 109, 1763 (2005)CrossRefGoogle Scholar
  40. 40.
    J. Beck, J. Vartuli, W. Roth, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  41. 41.
    M.A. Wahab, W. Guo, W.J. Cho, C.S. Ha, J. Sol-Gel. Sci. Technol. 27, 333 (2003)CrossRefGoogle Scholar
  42. 42.
    H. Zhu, D.J. Jones, J. Zajac, R. Dutarture, M. Rhomari, J. Roziere, Chem. Mater. 14, 4886 (2002)CrossRefGoogle Scholar
  43. 43.
    M.C. Burleigh, M.A. Markowitz, M.S. Spector, B.P. Gaber, J. Phys. Chem. B 105, 9935 (2001)CrossRefGoogle Scholar
  44. 44.
    G.M. Ziarani, N.H. Mohtasham, N. Lashgari, A. Badiei, Res. Chem. Intermed. 41, 7581 (2015)CrossRefGoogle Scholar
  45. 45.
    D.M. Jiang, J.S. Gao, Q.H. Yang, J. Yang, C. Li, Chem. Mater. 18, 6012 (2006)CrossRefGoogle Scholar
  46. 46.
    S. Inagaki, S. Guan, Y. Fukushima, O. Terasak, J. Am. Chem. Soc. 121, 9611 (1999)CrossRefGoogle Scholar
  47. 47.
    L. Zhang, Q. Yang, W.H. Zhang, Y. Li, J. Yang, D. Jiang, G. Zhu, C. Li, J. Mater. Chem. 15, 2562 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 416, 304 (2002)CrossRefGoogle Scholar
  49. 49.
    J.T.A. Jones, C.D. Wood, C. Dickinson, Y.Z. Khimyak, Chem. Mater. 20, 3385 (2008)CrossRefGoogle Scholar
  50. 50.
    P. Mohanty, N.M.K. Linn, K. Landskron, Langmuir 26, 1147 (2010)CrossRefGoogle Scholar
  51. 51.
    H.Y. Wua, C.H. Liao, Y.C. Pan, C.L. Yeh, H.M. Kao, Microporous Mesoporous Mater. 119, 109 (2009)CrossRefGoogle Scholar
  52. 52.
    A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34, 164 (2005)CrossRefGoogle Scholar
  53. 53.
    M.A. Markowitz, J. Klaehn, R.A. Hendel, S.B. Qadriq, S.L. Golledge, D.G. Castner, B.A. Gaber, J. Phys. Chem. B 104, 10820 (2000)CrossRefGoogle Scholar
  54. 54.
    M.A. Wahab, I. Kim, C.S. Ha, J. Solid State Chem. 177, 3439 (2004)CrossRefGoogle Scholar
  55. 55.
    L. Zhang, J. Liu, J. Yang, Q.H. Yang, C. Li, Microporous Mesoporous Mater. 109, 172 (2008)CrossRefGoogle Scholar
  56. 56.
    B. Xue, L.Z. Wen, D. Ma, M.M. Li, J. Xu, Res. Chem. Intermed. 44, 7641 (2018)CrossRefGoogle Scholar
  57. 57.
    S. Cheng, X.G. Wang, S.Y. Chen, Top. Catal. 52, 681 (2009)CrossRefGoogle Scholar
  58. 58.
    A.R. Burgoyne, R. Meijboom, Catal. Lett. 143, 563 (2013)CrossRefGoogle Scholar
  59. 59.
    R.A. Sheldon, M.I. Wallau, W.C.E. Arends, U. Schuchardt, Acc. Chem. Res. 31, 485 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHuaiyin Normal UniversityHuai’anChina
  2. 2.School of Basic Medical SciencesFudan UniversityShanghaiChina
  3. 3.Education Ministry Key and International Joint Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations