Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3089–3106 | Cite as

Synthesis of ZnO–SnO2 nanocomposites: impact of polyethylene glycol on morphological, luminescence and photocatalytic properties

  • Atif Mossad AliEmail author
  • Nimah Asaad Ghazwani
  • H. Algarni
  • Adel A. IsmailEmail author


Zinc oxide-doped tin dioxide (ZnO–SnO2) nanomaterials were prepared by a sol–gel method with and without different amounts (0.5, 1.0 and 2.0 g) of polyethylene glycol (PEG). The prepared nanocomposites were characterized for structural, surface and optical properties. The effect of a PEG on the prepared ZnO–SnO2 nanocomposites was investigated. The photocatalytic activities of the synthesized nanocomposites were evaluated by methylene blue dye degradation under UV illumination. The ZnO–SnO2 nanocomposites prepared with 2.0 g of PEG showed the highest degradation efficiency of 87.30%, suggesting that adding PEG enhances the photocatalytic performance of ZnO–SnO2 nanocomposites due to increased inhibition of e/h+ pair recombination and efficient generation of superoxide radical anions and hydroxyl radicals.


Polyethylene glycol Nanocomposites Photocatalytic activity Sol–gel 



The authors extend their appreciation to King Abdul-Aziz City for Sciences and Technology (KACST), Kingdom of Saudi Arabia for funding this work under Grant No. 1-17-01-010-0023.


  1. 1.
    R. Javed, M. Ahmed, I. Haq, S. Nisa, M. Zia, Mater. Sci. Eng. C 79, 108 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Kumar, R. Nigam, V. Kundu, N. Jaggi, J. Mater. Sci. Mater. Electron. 26, 3268 (2015)CrossRefGoogle Scholar
  3. 3.
    X. An, F. Teng, P. Zhang, C. Zhao, X. Pan, Z. Zhang, E. Xie, J. Alloys Compd. 614, 373 (2014)CrossRefGoogle Scholar
  4. 4.
    R.A. Zargar, M.A. Bhat, I.R. Parrey, M. Arora, J. Kumar, A.K. Hafiz, Optik 127, 6997 (2016)CrossRefGoogle Scholar
  5. 5.
    P.K. Baitha, J. Manam, J. Rare Earth 33, 805 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Kong, Z. Rui, H. Ji, Y. Tong, Catal. Today 258, 75 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Tharsika, A.S.M.A. Haseeb, M.F.M. Sabri, Thin Solid Films 558, 283 (2014)CrossRefGoogle Scholar
  8. 8.
    D.E. Tanasa, C.G. Piuleac, S. Curteanu, E. Popovici, J. Mater. Sci. 48, 8029 (2013)CrossRefGoogle Scholar
  9. 9.
    X.-J. Wen, C.-G. Niu, L. Zhang, D.-W. Huang, G.-M. Zeng, Ceram. Int. 43, 1922 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Guo, C.-G. Niu, X.-J. Wen, L. Zhang, C. Liang, X.-G. Zhang, D.-L. Guan, N. Tang, G.-M. Zeng, J. Colloid Interface Sci. 513, 852 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Guo, C.-G. Niu, L. Zhang, X.-J. Wen, C. Liang, X.-G. Zhang, D.-L. Guan, N. Tang, G.-M. Zeng, ACS Sustain. Chem. Eng. 6, 8003 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Liang, C.-G. Niu, L. Zhang, X.-J. Wen, S.-F. Yang, H. Guo, G.-M. Zeng, J. Hazard. Mater. 361, 245 (2019)CrossRefGoogle Scholar
  13. 13.
    H. Guo, C.-G. Niu, D.-W. Huang, N. Tang, C. Liang, L. Zhang, X.-J. Wen, Y. Yang, W.-J. Wang, G.-M. Zeng, Chem. Eng. J. 360, 349 (2019)CrossRefGoogle Scholar
  14. 14.
    M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Mater. Lett. 59, 3641 (2005)CrossRefGoogle Scholar
  15. 15.
    S.-J. Lee, C.-S. Hwang, J.-E. Pi, M.-K. Ryu, H. Oh, S.H. Cho, J.-H. Yang, S.-H.K. Park, H.Y. Chu, Mater. Lett. 122, 94 (2014)CrossRefGoogle Scholar
  16. 16.
    M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim, A.-H.T. Kandil, Arab. J. Chem. 7, 71 (2014)CrossRefGoogle Scholar
  17. 17.
    W. Li, S. Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu, S. Yan, Sens. Actuators B 211, 392 (2015)CrossRefGoogle Scholar
  18. 18.
    A.D. Bhagwat, S.S. Sawant, B.G. Ankamwar, C.M. Mahajan, J. Nano-Electron. Phys. 7, 37 (2015)Google Scholar
  19. 19.
    Y. Liu, M. Liu, Adv. Eng. Mater. 8, 89 (2006)CrossRefGoogle Scholar
  20. 20.
    E.H. Jo, H. Chang, S.K. Kim, K.M. Roh, J. Kim, H.D. Jang, Mater. Lett. 131, 244 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Faisal, A.A. Ibrahim, F.A. Harraz, H. Bouzid, M.S. Al-Assiri, A.A. Ismail, J. Mol. Catal. A Chem. 397, 19 (2015)CrossRefGoogle Scholar
  22. 22.
    V.V. Namboodiri, R.S. Varma, Green Chem. 3, 146 (2001)CrossRefGoogle Scholar
  23. 23.
    Z. Li, Y. Xiong, Y. Xie, Inorg. Chem. 42, 8105 (2003)CrossRefGoogle Scholar
  24. 24.
    E. Shen, C. Wang, E. Wang, Z. Kang, L. Gao, C. Hu, L. Xu, Mater. Lett. 58, 3761 (2004)CrossRefGoogle Scholar
  25. 25.
    V. Rajendran, K. Anandan, Mater. Sci. Semicond. Proce. 15, 393 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Subramanyam, N. Sreelekha, G. Murali, D.A. Reddy, R.P. Vijayalakshmi, Phys. B 454, 86 (2014)CrossRefGoogle Scholar
  27. 27.
    Q.P. Wang, D.H. Zhang, Z.Y. Xue, X.T. Hao, Appl. Surf. Sci. 201, 123 (2002)CrossRefGoogle Scholar
  28. 28.
    X.M. Fan, J.S. Lian, L. Zhao, Y.H. Liu, Appl. Surf. Sci. 252, 420 (2005)CrossRefGoogle Scholar
  29. 29.
    R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, Talanta 131, 490 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Jung, S. Kim, S. Ju, Opt. Mater. 33, 280 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31 (2013)CrossRefGoogle Scholar
  32. 32.
    E.H. Jo, H. Chang, S.K. Kim, K.M. Roh, J. Kim, H.D. Jang, Mater. Lett. 131, 244 (2014)CrossRefGoogle Scholar
  33. 33.
    C.-H. Zhou, X.-Z. Zhao, B.-C. Yang, D. Zhang, Z.-Y. Li, K.-C. Zhou, J. Colloid Interface Sci. 374, 9 (2012)CrossRefGoogle Scholar
  34. 34.
    Z. Khodami, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A Chem. 409, 59 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Gao, Y. Li, Y. Zhao, W. Wan, G. Du, X. Ren, H. Zhao, J. Alloys Compd. 703, 354 (2017)CrossRefGoogle Scholar
  36. 36.
    V. Rajendran, K. Anandan, Mater. Sci. Semicond. Process. 15, 393 (2012)CrossRefGoogle Scholar
  37. 37.
    V. Agrahari, M.C. Mathpal, S. Kumar, M. Kumar, A. Agarwal, J. Mater. Sci. Mater. Electron. 27, 6020 (2016)CrossRefGoogle Scholar
  38. 38.
    P. Sangeetha, V. Sasirekha, V. Ramakrishnan, J. Raman Spectrosc. 42, 1634 (2011)CrossRefGoogle Scholar
  39. 39.
    N. Bhardwaj, A. Pandey, D.K. Avasthi, S. Mohapatra, J. Alloys Compd. 680, 155 (2016)CrossRefGoogle Scholar
  40. 40.
    W. Chen, D. Ghosh, S. Chen, J. Mater. Sci. 43, 5291 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Ali, F.B. Bouaifel, B. Sieber, H. Elhouichet, A. Addad, L. Boussekey, M. Ferid, R. Boukherrou, Superlattices Microstruct. 91, 225 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Wang, Z. Chen, Y. Liu, C.-H. Shek, C.M.L. Wu, J.K.L. Lai, Sol. Energy Mater. Sol. Cells 128, 254 (2014)CrossRefGoogle Scholar
  43. 43.
    V.K. Tomer, S. Duhan, Sens. Actuators B 223, 750 (2016)CrossRefGoogle Scholar
  44. 44.
    P.V. Reddy, S.V. Reddy, B.S. Reddy, Mater. Today Proc. 3, 1752 (2016)CrossRefGoogle Scholar
  45. 45.
    W. Tian, T. Zhai, C. Zhang, S.-L. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg, Y. Bando, Adv. Mater. 25, 4625 (2013)CrossRefGoogle Scholar
  46. 46.
    A. Hamrouni, N. Moussa, F. Parrino, A.D. Paola, A. Houas, L. Palmisano, J. Mol. Catal. A Chem. 390, 133 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Ge, X. Wang, C. Li, S. Wang, L. Wang, R. Qu, Z. Wang, Chem. Eng. J. 359, 1056 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Nanotechnology and Advanced Materials Program, Energy and Building Research CenterKuwait Institute for Scientific Research (KISR)SafatKuwait
  4. 4.Central Metallurgical R&D Institute, CMRDIHelwan, CairoEgypt

Personalised recommendations