Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3053–3075 | Cite as

Synthesis, cytotoxic and antioxidant activities of azolyl benzothiazine carboxamides

  • Siva Sankar Panga
  • Rekha Tamatam
  • Padmaja Adivireddy
  • Padmavathi VenkatapuramEmail author
  • Siva Krishna Narra
  • Kondaiah Paturu
Article
  • 21 Downloads

Abstract

Azolyl benzothiazine carboxamides were prepared from benzothiazine carboxylate and azolyl amines in the presence of NaOMe under ultrasonication. 4-Bromothiophenylimidazolyl benzothiazine carboxamide (19b) and 4-bromopyrrolylimidazolyl benzothiazine carboxamide (22b) showed cytotoxic activity on HeLa cell lines (IC50 33.75, 47.52 µM) and MCF-7 cell lines (IC5031.75, 34.35 µM). Furthermore, methyl-substituted furanyloxazolyl benzothiazine carboxamide (14a), furanylimidazolyl benzothiazine carboxamide (16a), thiophenyloxazolyl benzothiazine carboxamide (17a) and pyrrolyloxazolyl benzothiazine carboxamide (20a) exhibited antioxidant activity greater than ascorbic acid.

Graphical abstract

Azolyl benzothiazine carboxamides are prepared from benzothiazine carboxylate and azolyl amines. Optimization of reaction conditions is established using different molar concentrations of NaOMe. Compounds 19b and 22b showed cytotoxic activity on HeLa cell lines and MCF-7 cell lines. Compounds 14a, 16a, 17a and 20a exhibited prominent antioxidant activity.

Keywords

Azole Benzothiazine carboxamide Cytotoxic activity Antioxidant activity 

Notes

Acknowledgements

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance under a major research project.

Supplementary material

11164_2019_3778_MOESM1_ESM.docx (6.3 mb)
Supplementary material 1 (DOCX 6470 kb)

References

  1. 1.
    M.Z. ur-Rehma, J.A. Choudary, M.R.J. Elsegood, H.L. Siddiqui, Km Khan, Eur. J. Med. Chem. 44, 1311 (2009)CrossRefGoogle Scholar
  2. 2.
    M.A. Gouda, B.H.M. Hussein, Y. El Said Sherif, Synth. Commun. 47(19), 1709 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Selvam, D.F. Smee, B.B. Gowen, C.W. Day, D.L. Barnard, J.D. Morrey, Antiviral Res. 74, 81 (2007)CrossRefGoogle Scholar
  4. 4.
    C.T. Supuran, A. Casini, A. Mastrolorenzo, A. Scozzafava, Mini Rev. Med. Chem. 4, 625 (2004)CrossRefGoogle Scholar
  5. 5.
    N.C. Desai, N. Bhatt, H. Somani, A. Trivedi, Eur. J. Med. Chem. 67, 54 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Bahnous, A. Bouraiou, M. Chelghoum, S. Bouacida, T. Roisnel, F. Smati, C. Bentchouala, P.C. Gros, A. Belfaitah, Bioorg. Med. Chem. Lett. 23, 1274 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Yurttas, M. Duran, S. Demirayak, H.K. Gencer, Y. Tunali, Bioorg. Med. Chem. Lett. 23, 6764 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Lu, X. Liu, B. Wan, S.G. Franzblau, L. Chen, C. Zhou, Q. You, Eur. J. Med. Chem. 49, 164 (2012)CrossRefGoogle Scholar
  9. 9.
    M.D. Altintop, A. Ozdemir, G.T. Zitouni, S. Ilgin, O. Atli, R. Demirel, Z.A. Kaplancikli, Eur. J. Med. Chem. 92, 342 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, P. Wu, Y. Fu, F. Zhang, B. Chen, Tetrahedron Lett. 58, 870 (2017)CrossRefGoogle Scholar
  11. 11.
    I.E. Kibriz, M. Saçmaci, E.S. Ahin, I. Yildirim, Tetrahedron 73, 1795 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Popsavin, V. Koji, L. Torovi, M. Svirce, S.S. Spai, D. Jakimov, L. Aleksi, G. Bogdanovi, V. Popsavin, Eur. J. Med. Chem. 111, 114 (2016)CrossRefGoogle Scholar
  13. 13.
    D.V. Sowmya, G.L. Teja, A. Padmaja, V.K. Prasad, V. Padmavathi, Eur. J. Med. Chem. 143, 891 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Divya, G. Sraya, A. Padmaja, V. Padmavthi, Res. Chem. Immediated. 41, 4413 (2015)Google Scholar
  15. 15.
    S.S. Basha, K. Divya, A. Padmaja, V. Padmavthi, Res. Chem. Immediated. 41, 10067 (2015)Google Scholar
  16. 16.
    L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, S.R. Tannenbaum, Anal. Biochem. 126, 131 (1982)CrossRefGoogle Scholar
  17. 17.
    L. Marcocci, J.J. Maguire, M.T. Droy-Lefaix, L. Packer, Biochem. Biophys. Res. Commun. 201, 748 (1994)CrossRefGoogle Scholar
  18. 18.
    N. Ahmad, M.Z. ur-Rehman, H.L. Siddiqui, M.F. Ullah, M. Parvez, Eur. J. Med. Chem. 46, 2368 (2011)CrossRefGoogle Scholar
  19. 19.
    K.E. Price, C.L. Aboussafy, B.M. Lillie, R.W. McLaughlin, J. Mustakis, K.W. Hettenbach, J.M. Hawkins, R. Vaidyanathan, Org. Lett. 11, 2033 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Sabot, K.A. Kumar, S. Meunier, C. Mioskowski, Tetrahedron Lett. 48, 3863 (2007)CrossRefGoogle Scholar
  21. 21.
    X. Yang, V.B. Birman, Org. Lett. 11, 1499 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Ishihara, Y. Kuroki, N. Hanaki, S. Ohara, H. Yamamoto, J. Am. Chem. Soc. 118, 1569 (1996)CrossRefGoogle Scholar
  23. 23.
    Y. Kuroki, K. Ishihara, N. Hanaki, S. Ohara, H. Yamamoto, Bull. Chem. Soc. Jpn 71, 1221 (1998)CrossRefGoogle Scholar
  24. 24.
    M. Movassaghi, M.A. Schmidt, Org. Lett. 7, 2453 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Ohshima, Y. Hayashi, K. Agura, Y. Fujii, A. Yoshiyama, K. Mashima, Chem. Commun. 48, 5434 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Kim,  H.G. Lee, S.B. Kang, G.H. Sung, J.J. Kim, J.K. Park, S.G. Lee, Y.J.  Yoon, Synthesis 44, 42 (2012)Google Scholar
  27. 27.
    J.J.M. Landry, P.T. Pyl, T. Rausch, T. Zichner, M.M. Tekkedil, A.M. Stütz, A. Jauch, R.S. Aiyar, G. Pau, N. Delhomme, J. Gagneur, J.O. Korbel, W. Huber, L.M. Steinmetz, J.J.M. Landry et al., Genes, Genomes. Genetics 3, 1213 (2013)Google Scholar
  28. 28.
    S. Comsa, A.M. Cimpean, M. Raica, Anticancer Res. 35, 3147 (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Siva Sankar Panga
    • 1
  • Rekha Tamatam
    • 1
  • Padmaja Adivireddy
    • 1
  • Padmavathi Venkatapuram
    • 1
    Email author
  • Siva Krishna Narra
    • 2
  • Kondaiah Paturu
    • 2
  1. 1.Department of ChemistrySri Venkateswara UniversityTirupatiIndia
  2. 2.Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia

Personalised recommendations