Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3033–3051 | Cite as

Synthesis of reduced graphene oxide/Co3O4 nanocomposite electrode material for sensor application

  • G. Vinodhkumar
  • R. Ramya
  • I. Vetha PotheherEmail author
  • M. Vimalan
  • A. Cyrac PeterEmail author
Article
  • 42 Downloads

Abstract

A sensitive electrochemical sensor has been developed based on reduced graphene oxide/Co3O4 (rGO/Co3O4) nanocomposites (NCs) synthesized by a facile solvothermal method. The developed sensor was used to determine the Dopamine Acid (DA) and Uric Acid (UA). The structure, morphology, band gap and composition of NCs was characterized by powder X-ray diffraction, scanning electron microscope, UV–Vis-Diffuse reflectance, FT-IR, Raman and Energy Dispersive Spectroscopy. rGO/Co3O4 NCs exhibited better electrocatalytic activity for the oxidation of DA and UA in solution with phosphate buffer at pH 7.0. For individual determination, the oxidation peak currents were linearly increased with the concentration of DA and UA in the ranges of 0.5–10 μM and 100 μM–1 mM, respectively. The detection limit of DA and UA was estimated to be 0.176 μM and 1.31 μM, respectively, with (S/N = 3). The fabricated modified electrode displayed an excellent anti-interference ability against 100-fold higher concentration of potential interferent species and metal ions with good stability and reproducibility. Results show that the developed sensor has a potential to determine the target analytes in real samples with satisfactory efficiency.

Keywords

rGO/Co3O4 nanocomposites Electrochemical detection Dopamine and uric acid Square wave voltammetry Sensor 

Notes

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A. Firsov, Nature 438, 197 (2005)CrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Hu, T. Lu, F. Chen, R. Zhang, J. Chin. Adv. Mater. Soc. 1, 21 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, X. Zhou, J. Zhang, F. Boey, H. Zhang, J. Phys. Chem. C 113, 14071 (2009)CrossRefGoogle Scholar
  6. 6.
    V.K. Rana, M.C. Choi, J.Y. Kong, G.Y. Kim, M.J. Kim, S.H. Kim, S. Mishra, R.P. Singh, C.S. Ha, Macromol. Mater. Eng. 296, 131 (2011)CrossRefGoogle Scholar
  7. 7.
    X. Wang, L. Zhi, K. Mullen, Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
  8. 8.
    M.R. Karim, Y. Ikeda, T. Ide, S. Sugimoto, K. Toda, Y. Kitamura, T. Ihara, T. Matsui, T. Taniguchi, M. Koinuma, Y. Matsumoto, S. Hayami, New J. Chem. 38, 2121 (2014)CrossRefGoogle Scholar
  9. 9.
    D.A.C. Brownson, C.E. Banks, Analyst 135, 2768 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Pumera, Chem. Rec. 9, 211 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Anal. Chem. 29, 954 (2010)Google Scholar
  12. 12.
    M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Zhao, G. Chen, L. Zhu, G. Li, Electrochem. Commun. 13, 31 (2011)CrossRefGoogle Scholar
  14. 14.
    R.N. Adams, Anal. Chem. 48, 1126A (1976)CrossRefGoogle Scholar
  15. 15.
    M.E. Rice, A.F. Oke, C.W. Bradberry, R.N. Adams, Brain Res. 340, 151 (1985)CrossRefGoogle Scholar
  16. 16.
    W. Zhang, F. Liu, Q. Li, Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, X. Zhang, Phys. Chem. Chem. Phys. 14, 16331 (2012)CrossRefGoogle Scholar
  17. 17.
    K.R. Ratinac, W. Yang, J.J. Gooding, P. Thordarson, F. Braeta, Electroanalysis 23, 803 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Chen, H. Feng, J. Li, Chem. Rev. 112, 6027 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Madhu, B. Dinesh, S.M. Chen, R. Saraswathi, V. Mani, RSC Adv. 5, 54379 (2015)CrossRefGoogle Scholar
  20. 20.
    H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Mater. Chem. Phys. 130, 672 (2011)CrossRefGoogle Scholar
  21. 21.
    M.M. Shahid, P.R. Kumar, A. Pandikumar, H.N. Lim, Y.H. Ngd, N.M. Huang, J. Mater. Chem. A. 3, 14458 (2015)CrossRefGoogle Scholar
  22. 22.
    A.J. Ahamed, P.V. Kumar, G. Srikesh, J. Environ. Nanotechnol. 4, 01 (2015)Google Scholar
  23. 23.
    J.F. Shen, Y.Z. Hu, M. Shi, N. Li, H.W. Ma, M.X. Ye, J. Phys. Chem. C 114, 1498 (2010)CrossRefGoogle Scholar
  24. 24.
    G.G. Kumar, M. Christy, H. Jang, K.S. Nahm, J. Power Sources 288, 451 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Zhang, K. Li, H. Li, J. Lu, Q. Fu, L. Zhang, J. Nanpart. Res. 18, 232 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Si, Y. Huang, T. Wang, J. Ma, RSC Adv. 3, 3487 (2013)CrossRefGoogle Scholar
  27. 27.
    M.A. Dayton, A.G. Ewing, R.M. Wightman, Anal. Chem. 52, 2392 (1980)CrossRefGoogle Scholar
  28. 28.
    J.K. Christensen, K. Keiding, L. Kryger, J. Rasmussen, H.J. Skov, Anal. Chem. 53, 1847 (1981)CrossRefGoogle Scholar
  29. 29.
    F.G. Gonon, C.M. Fombarlet, M.J. Buda, J.F. Pujol, Anal. Chem. 53, 1386 (1982)CrossRefGoogle Scholar
  30. 30.
    L. Falat, H.Y. Cheng, Anal. Chem. 54, 2108 (1982)CrossRefGoogle Scholar
  31. 31.
    C. Karuppiah, S. Palanisamy, S.M. Chen, V. Veeramani, P. Periakaruppan, Sens. Actuators B Chem. 196, 450 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Pan, H. Zhao, W. Shen, X. Dong, J. Xu, J. Mater. Chem. A. 1, 7159 (2013)CrossRefGoogle Scholar
  33. 33.
    L.G.J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, Sci. Rep. 3, 2300 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Numan, M.M. Shahid, F.S. Omar, S. Rafique, S. Bashir, K. Ramesh, S. Ramesh, Microchim. Acta 184, 2739 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Numan, M.M. Shahid, F.S. Omar, K. Ramesh, S. Ramesh, Sens. Actuators B Chem. 238, 1043 (2017)CrossRefGoogle Scholar
  36. 36.
    M.M. Shahid, A.H. Ismail, A.M.A. Abdul Amir AL-Mokaram, R. Vikneswaran, S. Ahmad, A. Hamza, A. Numan, Prog. Nat. Sci Mater 27, 582 (2017)CrossRefGoogle Scholar
  37. 37.
    M.M. Shahid, P.R. Kumar, A. Pandikumar, H.N. Lim, Y.H. Ng, N.M. Huang, J. Mater. Chem. A. 3, 14458 (2015)CrossRefGoogle Scholar
  38. 38.
    M.M. Shahid, A. Pandikumar, A.M. Golsheikh, N.M. Huang, H.N. Lim, RSC Adv. 4, 62793 (2014)CrossRefGoogle Scholar
  39. 39.
    N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater. 11, 771 (1999)CrossRefGoogle Scholar
  40. 40.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  41. 41.
    J.D. Mhamane, A. Suryawanshi, S.M. Joshi, P. Shaikh, N. Biradar, S. Ogale, C.V. Rode, Catal. Sci. Technol. 4, 1771 (2014)CrossRefGoogle Scholar
  42. 42.
    W. Yang, Z. Gao, J. Ma, J. Wang, B. Wang, L. Liu, Electrochim. Acta 112, 378 (2013)CrossRefGoogle Scholar
  43. 43.
    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987 (2009)CrossRefGoogle Scholar
  44. 44.
    R. Ramachandran, M. Saranya, V. Velmurugan, B.P.C. Raghupathy, S.K. Jeong, A. NirmalaGrace, Appl. Energy 153, 22 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Vijayakumar, A. Kiruthika Ponnalagi, S. Nagamuthu, G. Muralidharan, Electrochim. Acta 106, 500 (2013)CrossRefGoogle Scholar
  46. 46.
    R. Xu, J. Wang, Q. Li, G. Sun, E. Wang, S. Li, J. Gu, M. Ju, J. Solid State Chem. 182, 3177 (2009)CrossRefGoogle Scholar
  47. 47.
    J. Pal, P. Chauhan, Mater. Charact. 61, 575 (2010)CrossRefGoogle Scholar
  48. 48.
    M.Y. Nassar, I.S. Ahmed, Mater. Res. Bull. 47, 2638 (2012)CrossRefGoogle Scholar
  49. 49.
    S. Thiagarajan, S.M. Chen, Talanta 74, 212 (2007)CrossRefGoogle Scholar
  50. 50.
    R.P. da Silva, A.W.O. Lima, S.H.P. Serrano, Anal. Chim. Acta 612, 89 (2008)CrossRefGoogle Scholar
  51. 51.
    D.X. Han, T.T. Han, C.S. Shan, A. Ivaska, L. Niu, Electroanalysis 22, 2001 (2010)CrossRefGoogle Scholar
  52. 52.
    C.F. Tang, S.A. Kumar, S.M. Chen, Anal. Biochem. 380, 174 (2008)CrossRefGoogle Scholar
  53. 53.
    Y. Chen, L.R. Guo, W. Chen, X.J. Yang, B. Jin, L.M. Zheng, X.H. Xia, Bioelectrochemistry 75, 26 (2009)CrossRefGoogle Scholar
  54. 54.
    R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, S. Muthamizh, V. Narayanan, Synth. Met. 196, 151 (2014)CrossRefGoogle Scholar
  55. 55.
    Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Biosens. Bioelectron. 25, 2366 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsRaja Doraisingam Govt. Arts CollegeSivagangaIndia
  2. 2.Department of Bioelectronics and BiosensorsAlagappa UniversityKaraikudiIndia
  3. 3.Department of Physics, University College of Engineering, Bhrathidasan Institute of Technology (BIT) CampusAnna UniversityTiruchirappalliIndia
  4. 4.Department of PhysicsThirumalai Engineering CollegeKilambi, KancheepuramIndia

Personalised recommendations