Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2947–2961 | Cite as

Facile route for green synthesis of N-benzylideneaniline over bimetallic reduced graphene oxide: chemical reactivity of 2,3,4-substituted derivatives of aniline

  • Razia Aman
  • Saima Sadiq
  • Muhammad Ali
  • Muhammad SadiqEmail author
  • Jehan Gul
  • Khalid Saeed
  • Adnan Ali Khan
  • Sagheer Hussain Shah
Article
  • 28 Downloads

Abstract

Mn–Co-decorated reduced graphene oxide (Mn–Co–rGO) was prepared by modified condensation method and characterized through XRD, SEM, EDX, FTIR and BET surface area analysis. The prepared sample was explored for its activity in the synthesis of N-benzylideneaniline (N-BA) using benzyl alcohol and PhNH2 as precursors. The catalyst has been used efficiently with high activity and selectivity for oxidation of benzyl alcohol to benzaldehyde in the presence of molecular oxygen, which further react with aniline to produced N-BA with sustainable catalytic activity up to five cycles. Furthermore, the effect of the nature and position of the substituent on aniline on the chemical reactivity of the nucleophile was studied theoretically using density functional calculations.

Keywords

Benzyl alcohol Mn–Co–rGO Benzaldehyde Aniline N-benzylideneaniline 

Notes

Supplementary material

11164_2019_3772_MOESM1_ESM.docx (102 kb)
Supplementary material 1 (DOCX 101 kb)

References

  1. 1.
    O. Tsuge, R. Kanemasa, Adv. Heterocycl. Chem. 45, 231 (1989)CrossRefGoogle Scholar
  2. 2.
    M.F. Aly, M.I. Younes, S.A.O. Matwally, Tetrahedron 50, 3159 (1994)CrossRefGoogle Scholar
  3. 3.
    V.V. Kuznetsov, A.R. Palma, A.E. Aliev, A.V. Varlamov, N.S. Prostakov, Zh. Org. Khim. 127, 1579 (1991)Google Scholar
  4. 4.
    D.J. Hadjipavlou-litina, A.A. Geronikaki, Drug Des. Discov. 15, 199 (1996)Google Scholar
  5. 5.
    M. Cushman, D. Nagarathnam, A.K. Chakraborti, C.M. Lin, E.J. Hamel, Med. Chem. 34, 2579 (1991)CrossRefGoogle Scholar
  6. 6.
    M. Cushman, H.M. He, C.M. Lin, E.J. Hamel, Med. Chem. 36, 2817 (1993)CrossRefGoogle Scholar
  7. 7.
    P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C.A. Cabras, P.L. Colla, Bioorg. Med. Chem. 11, 4785 (2003)CrossRefGoogle Scholar
  8. 8.
    R.W. Layer, Chem. Rev. 63, 489 (1963)CrossRefGoogle Scholar
  9. 9.
    J.P. Adams, J. Chem. Soc. Perkin Trans. 1, 125 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Largeron, A. Chiaroni, M.B. Fleury, Chem. Eur. J. 14, 996 (2008)CrossRefGoogle Scholar
  11. 11.
    X. Lang, H. Ji, C. Chen, W. Ma, J. Zhao, C. Chen, Angew. Chem. Int. Ed. 50, 3934 (2008)CrossRefGoogle Scholar
  12. 12.
    J.S.M. Samec, A.H. Ell, J.E. Backvall, Chem. Eur. J. 11, 2327 (2005)CrossRefGoogle Scholar
  13. 13.
    H. Choi, M.P. Doyle, Chem. Commun. 7, 745 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Jiang, J. Chen, J.S. Huang, C.M. Che, Org. Lett. 11, 4568 (2009)CrossRefGoogle Scholar
  15. 15.
    C.S. Yi, D.W. Lee, Organometallics 28, 947 (2009)CrossRefGoogle Scholar
  16. 16.
    G.E. Dobereiner, R.H. Crabtree, Chem. Rev. 110, 681 (2010)CrossRefGoogle Scholar
  17. 17.
    T.D. Nixon, M.K. Whittlesey, J.M.J. Williams, Dalton Trans. 5, 753 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Guillena, D.J. Ramon, M. Yus, Chem. Rev. 110, 1611 (2010)CrossRefGoogle Scholar
  19. 19.
    B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 49, 1468 (2010)CrossRefGoogle Scholar
  20. 20.
    M.A. Esteruelas, N. Honczek, M. Oliván, E. Oñateand, M. Valencia, Organometallics 30, 2468 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Jiang, L. Jin, H. Tian, X. Yuan, X. Yu, Q. Xu, Chem. Commun. 47, 10833 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Blackburn, R.J.K. Taylor, Org. Lett. 3, 1637 (2001)CrossRefGoogle Scholar
  23. 23.
    S. Sithambaram, R. Kumar, Y.C. Son, S.L. Suib, J. Catal. 253, 269 (2008)CrossRefGoogle Scholar
  24. 24.
    M.S. Kwon, S. Kim, S. Park, W. Bosco, R.K. Chidrala, J. Park, J. Org. Chem. 74, 2877 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Sun, F.Z. Su, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Angew. Chem. Int. Ed. 48, 4390 (2009)CrossRefGoogle Scholar
  26. 26.
    J.W. Kim, J. He, K. Yamaguchi, N. Mizuno, Chem. Lett. 38, 920 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Cano, D.J. Ramón, M. Yus, J. Org. Chem. 76, 5547 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Shiraishi, M. Ikeda, D. Tsukamoto, S. Tanaka, T. Hiraia, Chem. Commun. 47, 4811 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Kegnæs, J. Mielby, U.V. Mentzel, C.H. Christensen, A. Riisager, Green Chem. 12, 1437 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Guohao, J. Ind. Eng. Chem. Res. 46, 279 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Cui, Catal. Today 235, 152 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Arup, A. Nerush, G. Leitus, L.J.W. Shimon, Y.B. David, stein. J. Am. Chem. Soc. 138, 4298 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Shanthakumar, R. Kumar, Y.C. Son, S.L. Suib, J. Catal. 253, 269 (2008)CrossRefGoogle Scholar
  34. 34.
    E. Saravanakumar, J. Neumann, J.B. Sortais, K. Junge, C. Darcel, M. Beller, Nat. Commun. 7, 12641 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Matthias, M. Glatz, N. Gorgas, B. Stöger, E. Pittenauer, G. Allmaier, L.F. Veiros, K. Kirchner, Eur. J. Chem. 22(35), 12316 (2016)CrossRefGoogle Scholar
  36. 36.
    B. Chen, J. Li, W. Dai, L. Wang, S. Gao, Green Chem. 16, 3328 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Yu, C. Liu, L. Jiang, Q. Xu, Org. Lett. 13(23), 6184 (2011)CrossRefGoogle Scholar
  38. 38.
    G. Zhang, S.K. Hanson, Org. Lett. 15(3), 650 (2013)CrossRefGoogle Scholar
  39. 39.
    W. Cui, Q. Xiao, S. Sarina, W. Ao, M. Xie, H. Zhu, Z. Bao, Catal. Today 235, 152 (2014)CrossRefGoogle Scholar
  40. 40.
    K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 42(13), 1480 (2003)CrossRefGoogle Scholar
  41. 41.
    A. Beyramabadi, A. Morsali, Int. J. Phys. Sci. 6(7), 1780 (2011)Google Scholar
  42. 42.
    P.K. Chattaraj, B. Maiti, J. Am. Chem. Soc. 125(9), 2705 (2003)CrossRefGoogle Scholar
  43. 43.
    A.A.H. Kadhum, A.A. Al-Amiery, A.Y. Musa, A. Mohamad, Int. J. Mol. Sci. 12, 5747 (2011)CrossRefGoogle Scholar
  44. 44.
    A.A.H. Kadhum, A.A. Al-Amiery, M. Shikara, A. Mohamad, Int. J. Phys. Sci. 6(29), 6692 (2011)Google Scholar
  45. 45.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley, Weinheim, 2000)Google Scholar
  46. 46.
    S. Liu, J. Chem. Sci. 117(5), 477 (2005)CrossRefGoogle Scholar
  47. 47.
    C.A. Mebi, J. Chem. Sci. 123(5), 727 (2011)CrossRefGoogle Scholar
  48. 48.
    M. Monajjemi, M. Sayadian, K. Zare, A.R. Ilkhani, F. Mollaamin, Int. J. Phys. Sci. 6(16), 4063 (2011)Google Scholar
  49. 49.
    R.G. Pearson, Chemical Hardness–Applications from Molecules to Solids (Wiley, Weinheim, 1997)Google Scholar
  50. 50.
    J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 1998, 282 (1853)Google Scholar
  51. 51.
    S. Špirtović-Halilović, M. Salihović, E. Veljović, A. Osmanović, S. Trifunović, D. Završnik, Glas. Hem. Technol. Bosne Herceg. 43, 57 (2014)Google Scholar
  52. 52.
    S. Špirtović-Halilović, M. Salihović, H. Džudžević-Čančar, S. Trifunović, S. Roca, D. Softić, D. Završnik, J. Serb. Chem. Soc. 79(4), 435 (2014)CrossRefGoogle Scholar
  53. 53.
    D. Završnik, F. Bašić, F. Bečić, E. Bečić, S. Jažić, Period. Biol. 105(2), 137 (2003)Google Scholar
  54. 54.
    D. Završnik, S. Špirtović-Halilović, D. Softić, Period. Biol. 113(1), 93 (2011)Google Scholar
  55. 55.
    L. Stobinskia, B. Lesiaka, A. Malolepszyc, M. Mazurkiewiczc, B. Mierzwaa, J. Zemekd, P. Jiricek, I. Bieloshapkad, J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014)CrossRefGoogle Scholar
  56. 56.
    S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M.K. Moranska, M. Setkiewicz, Sensors 16, 103 (2016)CrossRefGoogle Scholar
  57. 57.
    T.N. Blanton, D. Majumda, Powder Diffr. 2, 68 (2013)CrossRefGoogle Scholar
  58. 58.
    R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong, S.Y. Chen, C. Guild, ACS 7, 819 (2017)Google Scholar
  59. 59.
    A. Manceau, A.I. Gorshkov, V.A. Drits, Am. Miner. 77, 1144 (1992)Google Scholar
  60. 60.
    P.K. Chattaraj, B. Maiti, J. Am. Chem. Soc. 125(9), 2705 (2003)CrossRefGoogle Scholar
  61. 61.
    X. Huang, L. Liu, H. Gao, W. Dong, M. Yang, G. Wang, Green Chem. 19, 769 (2017)CrossRefGoogle Scholar
  62. 62.
    S. Michlik, R, Kempe. Chem. Eur. J. 16, 13193 (2010)CrossRefGoogle Scholar
  63. 63.
    H. Naeimi, H. Sharghi, F. Salimi, K. Rabiei, Heteroat. Chem. 19, 43 (2008)CrossRefGoogle Scholar
  64. 64.
    A.A.H. Kadhum, A.A. Al-Amiery, A.Y. Musa, A. Mohamad, Int. J. Mol. Sci. 12, 5747 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Razia Aman
    • 1
  • Saima Sadiq
    • 1
    • 2
  • Muhammad Ali
    • 1
    • 2
  • Muhammad Sadiq
    • 1
    Email author
  • Jehan Gul
    • 1
  • Khalid Saeed
    • 3
  • Adnan Ali Khan
    • 1
    • 4
  • Sagheer Hussain Shah
    • 1
  1. 1.Department of ChemistryUniversity of MalakandChakdaraPakistan
  2. 2.School of Applied Chemical EngineeringKyungpook National UniversityDaeguSouth Korea
  3. 3.Department of ChemistryBacha Khan UniversityCharsaddaPakistan
  4. 4.Center for Computational Materials Science, University of MalakandChakdaraPakistan

Personalised recommendations