Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2869–2885 | Cite as

Relationship between (micro)structure and functional (photocatalytic and adsorption) properties of anatase–mordenite nanocomposite

  • Elena DomoroshchinaEmail author
  • Andrey Orekhov
  • Vladimir Chernyshev
  • Galina Kuz’micheva
  • Galina Kravchenko
  • Vera Klechkovskaya
  • Larisa Pirutko


Anatase–mordenite nanocomposite was synthesized in situ and characterized by X-ray diffraction analysis, Brunauer–Emmett–Teller measurements, infrared (IR) spectroscopy, electron diffraction measurements, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and scanning and transmission electron microscopy. It was found that X-ray-amorphous anatase located in the zeolite micropores resulted in a decrease in the specific surface of anatase–mordenite compared to the initial mordenite. Anatase-containing nanoparticles in anatase–mordenite showed round shape and formed nano-associates and conglomerates. The water content in the zeolite cavities in anatase–mordenite was lower compared to mordenite. Anatase–mordenite nanocomposite exhibited higher photocatalytic activity in the model decomposition reaction of methyl orange under ultraviolet (UV) radiation and higher adsorption capacity for extraction of P(V) and As(V) ions from aqueous environment in the dark compared to the initial mordenite or anatase due to an increase in the content of active OH-groups on the nanocomposite surface compared to mordenite and an increase in the specific surface compared to anatase.


Nanocomposite Microstructure X-ray diffraction Scanning/transmission electron microscopy Photocatalytic and adsorption properties 



The authors express their gratitude to the National Research Centre “Kurchatov Institute” and the Shared Research Center at IC for the opportunity to carry out the electron microscopy measurements, as well as ESRF for the access to ID22 station, experiment MA-3313. This work was supported by the Russian Academy of Sciences and Federal Agency of Scientific Organizations (project no. 0303-2016-0006), Ministry of Education and Science of the Russian Federation (grant no. RFMEFI61616X0069), and Russian Foundation for Basic Research (project no. 15-03-01289).


  1. 1.
    J.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites (Elsevier, Amsterdam, 2001)Google Scholar
  2. 2.
    C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of Zeolite Structure Types, 6th edn. (Elsevier, Amsterdam, 2007)Google Scholar
  3. 3.
    C. Oprea, V. Popescu, S. Birghila, Rom. J. Phys. 53, 231 (2008)Google Scholar
  4. 4.
    S. Corrent, G. Cosa, J.C. Scaiano et al., Chem. Mater. 13, 715 (2001)CrossRefGoogle Scholar
  5. 5.
    G. Cosa, M.S. Galletero, L. Fernández et al., New J. Chem. 26, 1448 (2002)CrossRefGoogle Scholar
  6. 6.
    T.M. Salama, I.O. Ali, M.M. Mohamed, J. Mol. Catal. A: Chem. 273, 198 (2007)CrossRefGoogle Scholar
  7. 7.
    M.V.P. Sharma, V. Durgakumari, M. Subrahmanyam, J. Hazard. Mater. 160, 568 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Takeuchi, J. Deguchi, M. Hidaka et al., Appl. Catal. B 89, 406 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Padervand, H. Salari, S. Ahmadvand et al., Res. Chem. Intermed. 38, 1975 (2012)CrossRefGoogle Scholar
  10. 10.
    R.M. Mohamed, E.S. Baeissa, J. Alloys Compd. 558, 68 (2013)CrossRefGoogle Scholar
  11. 11.
    K. Guesh, A. Mayoral, C.M. Alvarez et al., Microporous Mesoporous Mater. 225, 88 (2016)CrossRefGoogle Scholar
  12. 12.
    G.V. Kravchenko, E.N. Domoroshchina, G.M. Kuz’micheva et al., Nanotechnol. Russ. 11, 579 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Banerjee, S. Pillai, P. Falaras et al., J. Phys. Chem. Lett. 5, 2543 (2014)CrossRefGoogle Scholar
  14. 14.
    O. Carp, C. Huisman, A. Reller, Progress Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  15. 15.
    E. Domoroshchina, G. Kravchenko, G. Kuz’micheva, J. Cryst. Growth 468, 199 (2017)CrossRefGoogle Scholar
  16. 16.
    Y.M. Zhukov, Dissertation for PhD Degree (St Petersburg University, 2016) (in Russian)Google Scholar
  17. 17.
    G.M. Kuz’micheva, E.V. Savinkina, L.N. Obolenskaya et al., Crystallogr. Rep. 55, 866 (2010)CrossRefGoogle Scholar
  18. 18.
    V.B. Zlokazov, V.V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992)CrossRefGoogle Scholar
  19. 19.
    H. Toraya, J. Appl. Crystallogr. 19, 440 (1986)CrossRefGoogle Scholar
  20. 20.
    P.A. Stadelmann, JEMS—EMS Java Version (2004)Google Scholar
  21. 21.
    R.A. Mahamatkhanov, Dissertation for Doctoral Degree (Institute of Petrochemistry and Catalysis, 2001) (in Russian)Google Scholar
  22. 22.
    M. Ito, Y. Saito, Bull. Chem. Soc. Jpn 85, 3035 (1985)CrossRefGoogle Scholar
  23. 23.
    D. Zhao, J. Wang, X. Zhao et al., Chem. Res. Chin. Univ. 25, 543 (2009)Google Scholar
  24. 24.
    K.S. Smirnov, B. van de Graaf, Microporous Mesoporous Mater. 7, 133 (1996)CrossRefGoogle Scholar
  25. 25.
    A. Damin, G. Ricchiardi, S. Bordiga et al., Stud. Surf. Sci. Catal. 140, 195 (2001)CrossRefGoogle Scholar
  26. 26.
    M.N. Chong, Z.Y. Tneu, P.E. Poh et al., J. Taiwan Inst. Chem. Eng. 50, 288 (2014)CrossRefGoogle Scholar
  27. 27.
    A.V. Kostrikin, R.V. Kuznetsova, O.V. Kosenkova et al., J. Probl. Contemp. Sci. Pract. 2, 181 (2007). (in Russian) Google Scholar
  28. 28.
    W. Zhang, F. Bi, Y. Yu et al., J. Mol. Catal. A: Chem. 372, 6 (2013)CrossRefGoogle Scholar
  29. 29.
    C.D. Wagner, A.V. Naumkin, A.K. Vass, et al., NIST XPS Database Version 3.4 (2003)Google Scholar
  30. 30.
    E.N. Domoroshchina, V.V. Chernyshev, G.M. Kuz’micheva et al., Appl. Nanosci. 8, 19 (2018)CrossRefGoogle Scholar
  31. 31.
    E. Savinov, Soros Educ. J. 6, 52 (2000). (in Russian) Google Scholar
  32. 32.
    H. Lee, Y.-K. Park, S.-J. Kim et al., J. Ind. Eng. Chem. 35, 205 (2016)CrossRefGoogle Scholar
  33. 33.
    C.-C. Wang, J.-R. Li, X.-L. Lv et al., Energy Environ. Sci. 7, 2831 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Lazau, C. Ratiu, C. Orha et al., Mater. Res. Bull. 46, 1916 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Grätzel, J. Photochem. Photobiol., C 4, 145 (2003)CrossRefGoogle Scholar
  36. 36.
    N. Guettai, H.A. Amar, Desalination 185, 427 (2005)CrossRefGoogle Scholar
  37. 37.
    M. Dadachov, US Patent 20060144793A1 (2006)Google Scholar
  38. 38.
    A.A. Gaynanova, Dissertation for PhD Degree (Russian Technological University, 2019) (in Russian)Google Scholar
  39. 39.
    V.F. Kiselev, O.V. Krylov, Adsorption Processes on the Surface of Semiconductors and Dielectrics (Nauka, Moscow, 1978). (in Russian) Google Scholar
  40. 40.
    S. Morisson, Chemical Physics of Solid Surface (Mir, Moscow, 1980). (in Russian) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Federal State Budget Educational Institution of Higher Education«MIREA - Russian Technological University»MoscowRussia
  2. 2.Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’Russian Academy of SciencesMoscowRussia
  3. 3.National Research Center ‘Kurchatov Institute’MoscowRussia
  4. 4.Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations