Advertisement

Preparation and characterization of isatin complexed with Cu supported on 4-(aminomethyl) benzoic acid-functionalized Fe3O4 nanoparticles as a novel magnetic catalyst for the Ullmann coupling reaction

  • Mohammad Mehdi KhodaeiEmail author
  • Abdolhamid Alizadeh
  • Maryam Haghipour
Article
  • 7 Downloads

Abstract

Isatin complexed with Cu supported on 4-(aminomethyl) benzoic acid-functionalized Fe3O4 nanoparticles (Cu-IS-AMBA-MNPs) as a new catalyst was designed, prepared and characterized by appropriate analyses. The heterogeneous reusable catalyst was successfully used for the efficient and widespread syntheses of diaryl ethers and diarylamines via the Ullmann coupling reaction. This green catalyst was easily removed, reused several times with no significant loss of its activity, and provided a clean synthesis with excellent yield and reduced time.

Keyword

Magnetically recoverable nanocatalyst Ullman coupling reaction Nanoparticles Diaryl ethers Copper 

Notes

Acknowledgement

We thank the Research Council of Razi University for generous financial support of this work.

References

  1. 1.
    J.S. Sawyer, Tetrahedron 56, 5045 (2000)CrossRefGoogle Scholar
  2. 2.
    X. Zhang, F. Liu, Z. Wei, Z.O. Wang, Lett. Org. Chem. 10, 31 (2013)Google Scholar
  3. 3.
    H.J. Cristau, P.P. Cellier, S. Hamada, J.F. Spindler, M. Taillefer, Org. Lett. 6, 913 (2004)CrossRefGoogle Scholar
  4. 4.
    K.C. Nicolaou, C.N.C. Boddy, S. Brase, N. Winssinger, Angew. Chem. Int. Ed. 38, 2096 (1999)CrossRefGoogle Scholar
  5. 5.
    K.C. Nicolaou, S. Natarajan, H. Li, N.F. Jain, R. Huges, M.E. Solomon, J.M. Ramanujulu, C.N.C. Boddy, M. Takayanagi, Angew. Chem. Int. Ed. 37, 2708 (1998)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, D.P. Wang, X.Y. Wang, K. Ding, J. Org. Chem. 74, 7187 (2009)CrossRefGoogle Scholar
  7. 7.
    F. Ullmann, Chem. Ber. Dtsch. Chem. Ges. 37, 853 (1904)CrossRefGoogle Scholar
  8. 8.
    A. Shaabani, S.E. Afshari, R. Hooshmand, A.T. Tabatabaei, F. Hajishaabanha, RSC Adv. 6, 18113 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Lindley, Tetrahedron 40, 1433 (1984)CrossRefGoogle Scholar
  10. 10.
    J.C. Henrim, P.C. Pascal, H. Samy, F.S. Jean, Org. Lett. 6, 913 (2004)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, G. Ni, C. Li, S. Xu, Z. Zhang, X. Xie, Tetrahedron 71, 4927 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Handa, Y. Wang, F. Gallou, B.H. Lipshutz, Science 349, 1087 (2015)CrossRefGoogle Scholar
  13. 13.
    J.Y. Kim, J.C. Park, A. Kim, A.Y. Kim, H.J. Lee, H. Song, K.H. Park, Eur. J. Inorg. Chem. 28, 4219 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Huang, Y. Chen, J.H. Chan, L.R. Mike, D.L. Robert, Synlett 10, 1419 (2011)CrossRefGoogle Scholar
  15. 15.
    V.R. Choudhary, D.K. Dumbre, P.N. Yadav, S.K. Bhargava, Catal. Commun. 29, 132 (2011)CrossRefGoogle Scholar
  16. 16.
    S.A.R. Mulla, S.M. Inamdar, M.Y. Pathan, S.S. Chavan, Tetrahedron Lett. 53, 1826 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Zhou, J. Guo, J. Liu, K. Ding, S. Yu, Q. Cai, J. Am. Chem. Soc. 134, 14326 (2012)CrossRefGoogle Scholar
  18. 18.
    S.G. Babu, R. Karvembu, Tetrahedron Lett. 54, 1677 (2013)CrossRefGoogle Scholar
  19. 19.
    R.K. Gujadhur, C.G. Bates, D. Venkataraman, Org. Lett. 3, 4315 (2001)CrossRefGoogle Scholar
  20. 20.
    F.Y. Kwong, A. Klapars, S.L. Buchwald, Org. Lett. 4, 581 (2002)CrossRefGoogle Scholar
  21. 21.
    H.J. Cristau, P.P. Cellier, J.F. Spindler, M. Taillefer, Org. Lett. 6, 913 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Zhang, D. Zhang, L.S. Liebeskind, J. Org. Chem. 62, 2312 (1997)CrossRefGoogle Scholar
  23. 23.
    A.A. Kelkar, N.M. Patil, R.V. Chaudhari, Tetrahedron Lett. 43, 7143 (2002)CrossRefGoogle Scholar
  24. 24.
    A.S. Gajare, K. Toyota, M. Yoshifuji, F. Yoshifuji, Chem. Commun. 17, 1994 (2004)CrossRefGoogle Scholar
  25. 25.
    E. Buck, Z.J. Song, D. Tschaen, P.G. Dormer, R.P. Volante, P.J. Reider, Org. Lett. 4, 1623 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Palomo, M. Oiarbide, R. Lopez, E. Gomez-Bengoa, Chem. Commun. 19, 2091 (1998)CrossRefGoogle Scholar
  27. 27.
    D. Ma, Q. Cai, Org. Lett. 5, 3799 (2003)CrossRefGoogle Scholar
  28. 28.
    N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, S. Santra, Coord. Chem. Rev. 353, 1 (2017)CrossRefGoogle Scholar
  29. 29.
    J.S. Zheng, X.S. Zhang, P. Li, J. Zhu, X.G. Zhou, W.K. Yuan, Electrochem. Commun. 9, 895 (2007)CrossRefGoogle Scholar
  30. 30.
    W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3, 397 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Wang, X. Liu, Z. Su, H. Jing, Catal. Sci. Tech. 4, 71 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Fan, W. Dong, X. Huang, H. Gao, J. Wang, Z. Jin, J. Tang, G. Wang, ACS Catal. 7, 243 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Mishra, T.N. Poudel, N. Basavegowda, Y.R. Lee, J. Catal. 344, 273 (2016)CrossRefGoogle Scholar
  34. 34.
    H.N. Dadhania, K.R. Dipak, N.D. Abhishek, Catal. Sci. Tech. 5, 4806 (2015)CrossRefGoogle Scholar
  35. 35.
    X. An, D. Cheng, L. Dai, B. Wang, H.J. Ocampo, J. Nasrallah, X. Jia, J. Zou, Y. Long, Y. Ni, Appl. Catal. B 206, 53 (2017)CrossRefGoogle Scholar
  36. 36.
    M.A. Zolfigol, V. Khakyzadeh, A.R. Moosavi-Zare, A. Rostami, A. Zare, N. Iranpoor, R. Luque, Green Chem. 15, 2132 (2013)CrossRefGoogle Scholar
  37. 37.
    M. M. Khodaei, A. Alizadeh, M. Haghipour, Res. Chem. Inter. (2017).  https://doi.org/10.1007/s11164-017-3008-2 Google Scholar
  38. 38.
    K. He, Y. Ma, B. Yang, C. Liang, X. Chen, C. Cai, Mol. Biomol. Spectrosc. 173, 82 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Liu, H. Wang, L. Chai, M. Li, J. Coll. Inter. Sci. 478, 288 (2016)CrossRefGoogle Scholar
  40. 40.
    R. Mirzajani, S. Ahmadi, J. Ind. Eng. Chem. 23, 171 (2015)CrossRefGoogle Scholar
  41. 41.
    M.A. Rahman, U. Culsum, A. Kumar, H. Gao, N. Hu, Int. J. Biol. Macromolec. 87, 488 (2016)CrossRefGoogle Scholar
  42. 42.
    D. Yang, J. Hu, S. Fu, J. Phys. Chem. C 113, 7646 (2009)CrossRefGoogle Scholar
  43. 43.
    R. Singh, B.K. Allam, D.S. Raghuvanshi, K.N. Singh, Tetrahedron 69, 1038 (2013)CrossRefGoogle Scholar
  44. 44.
    J.C. Vantourout, R.P. Law, A. Isidro-Llobet, S.J. Atkinson, A.J. Watson, J. Org. Chem. 81, 3942 (2016)CrossRefGoogle Scholar
  45. 45.
    A. Ghorbani-Choghamarani, Z. Taherinia, Z. New J. Chem. 41, 9414 (2017)CrossRefGoogle Scholar
  46. 46.
    L. Cai, X. Qian, W. Song, T. Liu, X. Tao, W. Li, X. Xie, Tetrahedron 70, 4754 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Liu, D. Yang, X. Yang, M. Nie, G. Wu, Z. Wang, P. Gong, Bio. Med. Chem. 25, 4475 (2017)CrossRefGoogle Scholar
  48. 48.
    K. Kulangiappar, M. Anbukulandainathan, T. Raju, Synth. Commun. 1, 2494 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Yamada, M. Ishikawa, C. Kaneko, Chem. Pharm. Bull. 23, 2818 (1975)CrossRefGoogle Scholar
  50. 50.
    A. Kumar, B.S. Bhakuni, C.D. Prasad, S. Kumar, S. Kumar, Tetrahedron 69, 5383 (2013)CrossRefGoogle Scholar
  51. 51.
    H. Xu, Y. Chen, Synth. Commun. 37, 2411 (2007)CrossRefGoogle Scholar
  52. 52.
    F. Damkaci, C. Sigindere, T. Sobiech, E. Vik, J. Malone, Tetrahedron Lett. 58, 3559 (2017)CrossRefGoogle Scholar
  53. 53.
    M. Khalilzadeh, A. Hosseini, A. Pilevar, Eur. J. Org. Chem. 8, 1587 (2011)CrossRefGoogle Scholar
  54. 54.
    R. Arundhathi, D. Damodara, P.R. Likhar, M.L. Kantam, P. Saravanan, T. Magdaleno, S.H. Kwon, Adv. Syn. Catal. 353, 1591 (2011)CrossRefGoogle Scholar
  55. 55.
    S. Verma, N. Kumar, S.L. Jain, Tetrahedron Lett. 53, 4665 (2012)CrossRefGoogle Scholar
  56. 56.
    X. Liu, S. Zhang, Synlett 2, 268 (2011)Google Scholar
  57. 57.
    B. Kaboudin, Y. Abedi, T. Yokomatsu, Eur. J. Org. Chem. 33, 6656 (2011)CrossRefGoogle Scholar
  58. 58.
    J.C. Antilla, S.L. Buchwald, Org. Lett. 3, 2077 (2001)CrossRefGoogle Scholar
  59. 59.
    M.L. Kantam, G.T. Venkanna, C. Sridhar, B. Sreedhar, B.M. Choudary, J. Org. Chem. 71, 9522 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Organic ChemistryRazi UniversityKermanshahIran

Personalised recommendations