Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 4, pp 2457–2470 | Cite as

Catalytic applications of mesoporous CaBi2O4 obtained from a single source precursor

  • Shalu Atri
  • Vidhu Malik
  • Sitharaman Uma
  • Rajamani NagarajanEmail author
Article
  • 59 Downloads

Abstract

With the aim of generating mesoporous CaBi2O4 and further to investigate its catalytic properties, thermolysis of mineral beyerite was carried out between 650 and 800 °C for varying durations. Monophasic CaBi2O4 emerged after calcination of beyerite at 675 °C for 24 h. Successful Rietveld refinement of powder X-ray diffraction pattern of this sample was achieved in C2/c space group with a = 16.6066 (9) Å, b = 11.5884 (6) Å and c = 13.9915 (8) Å, β = 134.029°. Dumbbell-shaped morphology of crystallites was observed in field emission scanning electron microscopic images. The energy dispersive spectral analysis at various locations of the sample confirmed the atomic ratio of Ca, Bi and O close to 1:2:4. Presence of fingerprint modes in the Raman spectrum of this sample augmented the results from powder X-ray diffraction. Absorption over the entire ultraviolet region and part of the visible region along with tailing was noticed in the UV–visible spectrum of this sample. The direct band gap energy was found to be 2.67 eV. From nitrogen adsorption–desorption isotherms, surface area of 78 m2 g−1 and pore diameter of 5.18 nm were deduced. Reduction of harmful 4-nitrophenol and carcinogenic Cr(VI) was catalyzed efficiently by this sample. Kinetics of reduction of 4-nitrophenol has also been examined. Recyclability experiments were successful up to four cycles. Possible mechanisms operative in these sets of reactions have been discussed.

Keywords

Calcium bismuth oxide Single source precursor Mesoporosity Catalytic activity Nitroaromatics 

Notes

Acknowledgements

Authors thank DST-SERB (EMR/2016/006762) and (EMR/2016/006131) Govt of India for financial support to carry out this work. Shalu and VM thanks UGC and CSIR for JRF and SPM fellowship.

References

  1. 1.
    B. Hallstedt, D. Risold, L.J. Gauckler, J. Am. Ceram. Soc. 80, 2629 (1997)CrossRefGoogle Scholar
  2. 2.
    R.S. Roth, N.M. Hwang, C.J. Rawn, B.P. Burton, J.J. Ritter, J. Am. Ceram. Soc. 74, 2148 (1991)CrossRefGoogle Scholar
  3. 3.
    P. Conflant, J.-C. Boivin, D. Thomas, J. Solid State Chem. 18, 133 (1976)CrossRefGoogle Scholar
  4. 4.
    T.A.M. Haemers, D.J.W. Udo, R.B. Helmholdt, Mater. Res. Bull. 27, 1243 (1992)CrossRefGoogle Scholar
  5. 5.
    N. Sora, W. Wong-Ng, Q. Huang, R.S. Roth, C.J. Rawn, B.P. Burton, A. Santoro, J. Solid State Chem. 109, 251 (1994)CrossRefGoogle Scholar
  6. 6.
    J. Tang, Z. Zou, J. Ye, Angew. Chem. 43, 4463 (2004)CrossRefGoogle Scholar
  7. 7.
    W. Luo, J. Tang, Z. Zou, J. Ye, J. Alloys Compd. 455, 346 (2008)CrossRefGoogle Scholar
  8. 8.
    X. Wang, Z. Liu, Z. Liu, Chem. Cat. Chem. 9, 4029 (2017)Google Scholar
  9. 9.
    H.-Y. Wang, K. Xiong, Y.-C. Hu, K.-L. Zhang, R. Xiong, Key Eng. Mater. 538, 219 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Bahmani, M. Sellami, N. Bettahar, J. Therm. Anal. Calorim. 107, 955 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Nakamura, S. Ishii, K. Yamada, S. Matsushima, M. Arai, K. Kobayashi, Mater. Chem. Phys. 121, 385 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Pandey, V. Shrivastava, R. Nagarajan, Inorg. Chem. 57, 13667 (2018)CrossRefGoogle Scholar
  13. 13.
    V. Malik, M. Pokhriyal, S. Uma, RSC Adv. 6, 38252 (2016)CrossRefGoogle Scholar
  14. 14.
    A.C. Larson, R.B. Von-Dreele, J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Ahila, M. Malligavathy, E. Subramanian, D.P. Padiyan, Solid State Ionics 298, 23 (2016)CrossRefGoogle Scholar
  16. 16.
    R.S. Dowing, P.J. Kunkeler, H. Van-Bekkum, Catal. Today 37, 121 (1997)CrossRefGoogle Scholar
  17. 17.
    H.-B. Sun, Y. Ai, D. Li, Z. Tang, Z. Shao, Q. Liang, Chem. Eng. J. 314, 328 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Ai, Z. Hu, Z. Shao, L. Qi, L. Liu, H. Sun, Q. Liang, Nano Res. 11, 287 (2018)CrossRefGoogle Scholar
  19. 19.
    Z. Hu, J. Zhou, Y. Ai, L. Liu, L. Qi, R. Jiang, H. Bao, J. Wang, J. Hu, H.-B. Sun, Q. Liang, J. Catal. 368, 20 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Fedorczyk, J. Ratajczak, O. Kuzmych, M. Skompska, J. Solid State Electrochem. 19, 2849 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Wang, J. Lu, Y. Zhao, X. Wang, Z. Lin, X. Liu, R. Wu, C. Yang, X. Su, ChemCatChem 10, 4143 (2018)CrossRefGoogle Scholar
  22. 22.
    Z. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, Angew. Chem. Int. Ed. 51, 6406 (2012)CrossRefGoogle Scholar
  23. 23.
    M.H. Rashid, T.K. Mandal, J. Phys. Chem. C 111, 16750 (2007)CrossRefGoogle Scholar
  24. 24.
    M.H. Rashid, R.R. Bhattacharjee, A. Kotal, T.K. Mandal, Langmuir 22, 7141 (2006)CrossRefGoogle Scholar
  25. 25.
    R. Li, P. Zhang, Y. Huang, C. Chen, Q. Chen, Appl. Mater. Interfaces 5, 12695 (2013)CrossRefGoogle Scholar
  26. 26.
    P. Zhang, R. Li, Y. Huang, Q. Chen, Appl. Mater. Interfaces 6, 2671 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Zhu, G. Diao, J. Phys. Chem. C 115, 18923 (2011)CrossRefGoogle Scholar
  28. 28.
    X. Shi, F. Zheng, N. Yan, Q. Chen, Dalton Trans. 43, 13865 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Liu, L. Lv, X. Du, J. Lang, Y. Su, Y. Zhao, X. Wang, RSC Adv. 5, 103013 (2015)CrossRefGoogle Scholar
  30. 30.
    V. Malik, S. Uma, J. Enviorn. Chem. Eng. 6, 4755 (2018)CrossRefGoogle Scholar
  31. 31.
    J. Xia, G. He, L. Zhang, X. Sun, X. Wang, Appl. Catal. B 180, 408 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Liu, R. Chen, W. Liu, J. Wu, D. Gao, J. Hazard. Mater. 320, 96 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Selvaraj, S. Manonmani, S. Pattabhi, Bioresour. Technol. 89, 207 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpaa, Chem. Eng. J. 283, 445 (2016)CrossRefGoogle Scholar
  35. 35.
    Y.J. Zhang, J.L. Ou, Z.K. Duan, Z.J. Xing, Y. Wang, Colloids Surf. A 481, 108 (2015)CrossRefGoogle Scholar
  36. 36.
    S.X. Li, Y.Q. Lian, J.F. Mai, J.X. Tan, S.J. Hu, W.Q. Xia, W.W. Duan, Adv. Mater. Res. 433, 793 (2012)Google Scholar
  37. 37.
    Y.Y. Chang, J.W. Lim, J.K. Yang, J. Ind. Eng. Chem. 18, 188 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Materials Chemistry Group, Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations