Advertisement

Cu(CH3CN)4PF6 immobilized on halloysite as efficient heterogeneous catalyst for oxidation of allylic C–H bonds in olefins under mild reaction condition

  • Samahe SadjadiEmail author
  • Saadi SamadiEmail author
  • Mojgan Samadi
Article
  • 4 Downloads

Abstract

Considering the importance of oxidation of allylic C–H bonds in olefins and the unresolved challenging issues, such as long reaction time and the large quantity of catalyst required, and encouraged by the excellent performance of halloysite as a catalyst support, a novel catalytic system was developed to promote this reaction efficiently. To prepare the catalyst, halloysite was first functionalized with ionic liquid then reacted with 2-aminopyrimidine to afford a potential support, Hal-P. The latter was then used for in situ immobilization of Cu(CH3CN)4PF6 and applied to promote the reaction of cycloolefin and tert-butyl p-nitrobenzoperoxoate under mild reaction condition. The results showed that the nature of copper could play an important role in the catalytic activity. Moreover, the presence of ionic liquid and 2-aminopyrimidine in the structure could improve the activity of the final catalyst. Notably, low amounts of catalyst could catalyze the reaction to afford corresponding allylic esters in good yield. It was also found that the reaction was size selective and that cyclic olefins with lower strain could undergo this reaction more effectively. Study of the recyclability of the catalyst confirmed that it was recyclable and could be recovered and recycled for five consecutive reaction runs.

Keywords

Halloysite Allylic C–H bond oxidation Heterogeneous catalyst Olefins Cu(CH3CN)4PF6 

Notes

Acknowledgements

S. Sadjadi is grateful to the Iran Polymer and Petrochemical Institute for partial financial support. The support of Prof. Heravi is greatly appreciated. S. Samadi thanks the University of Kurdistan Research Councils and Iranian National Science Foundation (proposal no. 95838133) for partial support of this work.

Supplementary material

11164_2019_3745_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4789 kb)

References

  1. 1.
    M.B. Andrus, J.C. Lashley, Tetrahedron 58, 845 (2002)CrossRefGoogle Scholar
  2. 2.
    J. Eames, M. Watkinson, Angew. Chem. Int. Ed. 40, 3567 (2001)CrossRefGoogle Scholar
  3. 3.
    L. Faraji, S. Samadi, K. Jadidi, B. Notash, Bull. Korean Chem. Soc. 35, 1989 (2014)CrossRefGoogle Scholar
  4. 4.
    Z.-S. Hong, Y. Cao, J.-F. Deng, Mater. Lett. 52, 34 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Kharasch, G. Sosnovsky, N. Yang, J. Am. Chem. Soc. 81, 5819 (1959)CrossRefGoogle Scholar
  6. 6.
    I. Moiseev, M. Vargaftik, Coord. Chem. Rev. 248, 2381 (2004)CrossRefGoogle Scholar
  7. 7.
    D.J. Rawlinson, G. Sosnovsky, Synthesis 1972, 1 (1972)CrossRefGoogle Scholar
  8. 8.
    S. Samadi, K. Jadidi, B. Notash, Tetrahedron Asymmetry 24, 269 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Samadi, S. Nazari, H. Arvinnezhad, K. Jadidi, B. Notash, Tetrahedron 69, 6679 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Hayes, T.W. Wallace, Tetrahedron Lett. 31, 3355 (1990)CrossRefGoogle Scholar
  11. 11.
    J. Ficini, J. d’Angelo, Tetrahedron Lett. 17, 2441 (1976)CrossRefGoogle Scholar
  12. 12.
    E. Alvarez, M.T. Diaz, R. Perez, J.L. Ravelo, A. Regueiro, J.A. Vera, D. Zurita, J.D. Martin, J. Org. Chem. 59, 2848 (1994)CrossRefGoogle Scholar
  13. 13.
    E. Corey, J. Lee, J. Am. Chem. Soc. 115, 8873 (1993)CrossRefGoogle Scholar
  14. 14.
    M. Massaro, C.G. Colletti, G. Lazzara, S. Milioto, R. Noto, S. Riela, J. Mater. Chem. A 5, 13276 (2017)CrossRefGoogle Scholar
  15. 15.
    P. Pasbakhsh, G.J. Churchman, Natural Mineral Nanotubes: Properties and Applications. Apple Academic Press (2015)Google Scholar
  16. 16.
    M. Massaro, G. Lazzara, S. Milioto, R. Noto, S. Riela, J. Mater. Chem. B 5, 2867 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Massaro, V. Schembri, V. Campisciano, G. Cavallaro, G. Lazzara, S. Milioto, R. Noto, F. Parisi, S. Riela, RSC Adv. 6, 55312 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Tully, R. Yendluri, Y. Lvov, Biomacromolecules 17, 615 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, A. Tang, H. Yang, J. Ouyang, Appl. Catal. A 119, 8 (2016)Google Scholar
  20. 20.
    G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, Chem. Rec. 18, 1 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Yuan, D. Tan, F. Annabi-Bergaya, Appl. Clay Sci. 112–113, 75 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, A. Tang, H. Yang, J. Ouyang, Appl. Clay Sci. 119, 8 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, D. Zhang, A. Zhang, Z. Jia, D. Jia, Iran. Polym. J. 22, 501 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Szczepanik, P. Rogala, P.M. Słomkiewicz, D. Banaś, A. Kubala-Kukuś, L. Stabrawa, Appl. Clay Sci. 149, 118 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Szczepanik, P. Słomkiewicz, Appl. Clay Sci. 124–125, 31 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Zhai, B. Zhang, L. Liu, Y. Xie, H. Zhang, J. Liu, Catal. Commun. 12, 259 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Kumar-Krishnan, A. Hernandez-Rangel, U. Pal, O. Ceballos-Sanchez, F.J. Flores-Ruiz, E. Prokhorov, O. Arias de Fuentes, R. Esparza, M. Meyyappan, J. Mater. Chem. B 4, 2553 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Tan, P. Yuan, F. Annabi-Bergaya, D. Liu, L. Wang, H. Liu, H. He, Appl. Clay Sci. 96, 50 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Sabbagh, A. Akbari, N. Arsalani, B. Eftekhari-Sis, H. Hamishekar, Appl. Clay Sci. 148, 48 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Battistoni, A. Dimonte, E. Ubaldi, Y. Lvov, V. Erokhin, J. Nanosci. Nanotechnol. 17, 5310 (2017)CrossRefGoogle Scholar
  31. 31.
    V.A. Vinokurov, A.V. Stavitskaya, Y.A. Chudakov, E.V. Ivanov, L.K. Shrestha, K. Ariga, Y.A. Darrat, Y.M. Lvov, Sci. Technol. Adv. Mater. 18, 147 (2017)CrossRefGoogle Scholar
  32. 32.
    T. Yang, M. Du, M. Zhang, H. Zhu, P. Wang, M. Zou, Nanomater. Nanotech. 5, 1 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, X. He, J. Ouyang, H. Yang, Sci. Rep. 3, 2948 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, J. Ouyang, H. Yang, Appl. Clay Sci. 95, 252 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Yuan, A. Thill, F. Bergaya, Elsevier DOI, (2016)Google Scholar
  36. 36.
    S. Sadjadi, M.M. Heravi, M. Malmir, Res. Chem. Intermed. e4113 (2018)Google Scholar
  37. 37.
    S. Sadjadi, T. Hosseinnejad, M. Malmir, M.M. Heravi, New J. Chem. 41, 13935 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Yuan, P.D. Southon, Z. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, C.J. Kepert, J. Phys. Chem. C 112, 15742 (2008)CrossRefGoogle Scholar
  39. 39.
    M. Massaro, C.G. Colletti, G. Lazzara, S. Guernelli, R. Noto, S. Riela, ACS Sustain. Chem. Eng. 5, 3346 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Samadi, A. Ashouri, M. Ghambarian, RSC Adv. 7, 6679 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Sadjad, M.M. Heravi, M. Malmir, Carbohydr. Polym. 186, 25 (2018)CrossRefGoogle Scholar
  42. 42.
    N. Bahri-Laleh, S. Sadjadi, A. Poater, J. Colloid Interface Sci. 531, 421 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Sadjadi, G. Lazzara, M. Malmir, M.M. Heravi, J. Catal. 366, 245 (2018)CrossRefGoogle Scholar
  44. 44.
    Z. Wang, H.A. Colorado, Z.-H. Guo, H. Kim, Mater. Res. 15, 510 (2012)CrossRefGoogle Scholar
  45. 45.
    S. Samadi, K. Jadidi, B. Khanmohammadi, N. Tavakoli, J. Catal. 340, 344 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Massaro, C.G. Colletti, G. Buscemi, S. Cataldo, S. Guernelli, G. Lazzara, L.F. Liotta, F. Parisi, A. Pettignano, S. Riela, New J. Chem. 42, 13938 (2018)CrossRefGoogle Scholar
  47. 47.
    H. Zhu, M.L. Du, M.L. Zou, C.S. Xu, Y.Q. Fu, Dalton Trans. 41, 10465 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Sadjad, M. Malmir, M.M. Heravi, F. Ghoreyshi Kahangi, Int. J. Biol. Macromol. 118, 1903–1911 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Sadjad, M.M. Heravi, M. Malmir, F. Ghoreyshi Kahangi, Appl. Clay Sci. 162, 192 (2018)CrossRefGoogle Scholar
  50. 50.
    A.L. Beckwith, A.A. Zavitsas, J. Am. Chem. Soc. 108, 8230 (1986)CrossRefGoogle Scholar
  51. 51.
    J. Kochi, Tetrahedron 18, 483 (1962)CrossRefGoogle Scholar
  52. 52.
    J. Kochi, R. Subramanian, J. Am. Chem. Soc. 87, 4855 (1965)CrossRefGoogle Scholar
  53. 53.
    J.K. Kochi, J. Am. Chem. Soc. 84, 774 (1962)CrossRefGoogle Scholar
  54. 54.
    J.K. Kochi, P.J. Krusic, J. Am. Chem. Soc. 90, 7157 (1968)CrossRefGoogle Scholar
  55. 55.
    J.A. Mayoral, S. Rodríguez-Rodríguez, L. Salvatella, Chem. Eur. J. 14, 9274 (2008)CrossRefGoogle Scholar
  56. 56.
    C. Walling, W. Thaler, J. Am. Chem. Soc. 83, 3877 (1961)CrossRefGoogle Scholar
  57. 57.
    C. Walling, A.A. Zavitsas, J. Am. Chem. Soc. 85, 2084 (1963)CrossRefGoogle Scholar
  58. 58.
    S.H. Bertz, S. Cope, M. Murphy, C.A. Ogle, B.J. Taylor, J. Am. Chem. Soc. 129, 7208 (2007)CrossRefGoogle Scholar
  59. 59.
    A. Casitas, X. Ribas, Chem. Sci. 4, 2301 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet, F.-X. Felpin, Adv. Synth. Catal. 352, 33 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemicals InstituteTehranIran
  2. 2.Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of ScienceUniversity of KurdistanSanandajIran

Personalised recommendations