Research on Chemical Intermediates

, Volume 45, Issue 4, pp 2369–2381 | Cite as

Sandwich-like SnO2/MoO3−x prepared by electrostatic self-assembly for high-performance photocatalysis

  • Hanxin Zhang
  • Gongguan Wang
  • Guoliang Dai
  • Xiaowen XuEmail author


Sandwich-structured SnO2/MoO3−x has been successfully synthesized through electrostatic self-assembly. The crystal structure, morphology, size and composition of products were investigated by XRD, TEM (HRTEM), XPS and UV–Vis technologies. It was found that SnO2 nanoparticles are embedded between the layers of MoO3−x nanosheets. The investigation of photocatalytic properties indicated that the SnO2/MoO3−x heterostructure possessed excellent photocatalytic ability superior to SnO2 and MoO3 for the degradation of Rhodamine B and methylene blue driven by visible light. The results indicated that SnO2/MoO3−x acts as the trapping centers of photo-induced electrons and holes, which can promote the separation of photo-induced electron–hole pairs and charge migration. Furthermore, the photocatalyst SnO2/MoO3−x showed excellent recoverability as its photocatalytic activity remained even after five cycles.


Sandwich-structure Heterojunction Electrostatic self-assembly Tin oxide Molybdenum trioxide 



The work was funded by National Science Foundation of China (21203135) and Natural Science Foundation for colleges and universities in Jiangsu Province (14KJB150024), both awarded to Dr. Xiaowen Xu.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11164_2019_3743_MOESM1_ESM.docx (342 kb)
Supplementary material 1 (DOCX 341 kb)


  1. 1.
    Y. Xu, Q. Liu, C. Liu, Y. Zhai, M. Xie, J. Colloid Interface Sci. 512, 555 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Gao, Z. Mo, R. Guo, X. Niu, Z. Li, J. Mater. Sci. Mater. Electron. 29, 1 (2018)Google Scholar
  3. 3.
    H. Xu, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa, Appl. Catal. B Environ. 225, 452 (2018)CrossRefGoogle Scholar
  4. 4.
    C.G. Zhang, L.J. Tian, Chin. J. Catal. 39, 1373 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Wu, H. Wang, Y. Sun, T. Xiao, W. Tu, Appl. Catal. B Environ. 227, 5306 (2018)CrossRefGoogle Scholar
  6. 6.
    R.Q. Zhang, X.M. Liu, Z. Wen, Q. Jiang, J. Phys. Chem. C 115, 3425 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Ebina, T. Sasaki, A. Masaru Harada, M. Watanabe, Chem. Mater. 14, 4390 (2017)CrossRefGoogle Scholar
  8. 8.
    R.C. Pawar, C.S. Lee, Appl. Catal. B Environ. 144, 57 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Chen, D. Chu, L. Wang, J. Alloys Compd. 729, 710 (2017)CrossRefGoogle Scholar
  10. 10.
    K.M.O. Jensen, M. Christensen, P. Juhas, Am. Chem. Soc. 134, 6785 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Chithambararaj, N.S. Sanjini, S. Velmathi, A.C. Bose, Phys. Chem. Chem. Phys. 15, 14761 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Arbiol, J.R. Morante, P. Bouvier, Sensors Actuators B Chem. 118, 156 (2006)CrossRefGoogle Scholar
  13. 13.
    E.A. Makeeva, M.N. Rumyantseva, A.M. Gaskov, Inorg. Mater. 41, 442 (2005)CrossRefGoogle Scholar
  14. 14.
    Z.Z. Zhang, Q.D. Zhang, L.Y. Jia, Catal. Sci. Technol. 6, 2975 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Patnaik, G. Swain, K. Parida, Nanoscale 10, 5950 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Sultana, S. Mansingh, K. Parida, J. Phys. Chem. C 122, 808 (2018)CrossRefGoogle Scholar
  17. 17.
    R. Zhao, Z. Wang, Y. Yang, X. Xing, T. Zou, Z. Wang, J. Phys. Chem. Solids 120, 173 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Marzec, M. Radecka, W. Maziarz, A. Kusior, Z. Pędzich, J. Eur. Ceram. Soc. 36, 2981 (2016)CrossRefGoogle Scholar
  19. 19.
    W. Wang, J. Zhang, H. Huang, Z. Wu, Z. Zhang, Appl. Surf. Sci. 254, 1725 (2008)CrossRefGoogle Scholar
  20. 20.
    H. Ahn, H. Choi, K. Park, A. Seungbin Kim, Y. Sung, J. Phys. Chem. B 108, 9815 (2004)CrossRefGoogle Scholar
  21. 21.
    D.P. Sahoo, S. Nayak, K.H. Reddy, S. Martha, K. Parida, Inorg. Chem. 57, 3840 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Vasilopoulou, A.M. Douvas, D.G. Georgiadou, L.C. Palilis, S. Kennou, J. Am. Chem. Soc. 134, 16178 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Wang, F. Sun, Y. Zhang, L. Li, H. Chen, J. Mater. Chem. 20, 5641 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Yang, Y. Wang, X.W. Xu, J. Chem. 41, 1 (2014)Google Scholar
  25. 25.
    G.A. Parks, Chem. Rev. 65, 177 (1965)CrossRefGoogle Scholar
  26. 26.
    Y. Oaki, K. Nakamura, H. Imai, Chem. Eur. J. 18, 2825 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Gong, W. Zeng, H. Zhang, Mater. Lett. 154, 170 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Li, W. Zeng, Y. Zhang, S. Hussain, Mater. Lett. 160, 476 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Yazdani, R. Kashfi-Sadabad, H.D. Tran, M.D. Morales-Acosta, M.T. Pettes, Langmuir ACS J. Surf. Colloid 34, 6296 (2018)CrossRefGoogle Scholar
  30. 30.
    G. Mestl, N.F.D. Verbruggen, H. Knoezinger, Langmuir 11, 3035 (1995)CrossRefGoogle Scholar
  31. 31.
    H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, Nat. Mater. 16, 454 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Sol. Energy Mater. Sol. Cells 137, 175 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, RSC Adv. 4, 13610 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistrySuzhou University of Science and TechnologySuzhouChina

Personalised recommendations