Advertisement

Photophysical and antimicrobial properties of new double-armed benzo-15-crown-5 ligands and complexes

  • Serhat Koçoğlu
  • Hatice Ogutcu
  • Zeliha HayvalıEmail author
Article
  • 18 Downloads

Abstract

New double-armed crown ether ligands linked to pyridine derivatives have been synthesized and characterized. These macrocyclic ligands (15) have been synthesized by the reactions of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with 3-hydroxy pyridine derivatives. A series of Na+, K+ and Ag+ complexes (1a5a, 1b5b and 1c5c) of the macrocyclic ligands have been prepared from sodium perchlorate, sodium picrate, potassium iodide, potassium picrate and silver nitrate salts, respectively. The most suitable cation Na+ is bound to the 15-crown-5 cavity and 1:1 “filling complexes” are formed (1a5a) while the K+ cation interacts with the crown ether cavity and forms sandwich-type complexes (1b5b). The Ag+ complexes (1c5c) have been obtained with a pyridine moiety of the new crown ethers. New ligands undergo photophysical changes when bonding the cation. The influence of metal cations such as Na+, Li+, K+, Fe3+, Cu2+, Ca2+, Ba2+ and Al3+ on the spectroscopic properties of the pyridine linked to the double-armed crown ether moiety was investigated in EtOH solution by means of absorption and emission spectrometry. The prepared compounds (15, 1a5a, 1b5b and 1c5c) were evaluated for antibacterial and antifungal activities against pathogenic microorganisms. The results show that the antimicrobial activity of the synthesized compounds varying a degree of inhibitory effects on the growth of different tested pathogenic strains.

Keywords

Crown ether Alkali metal complexes Silver(I) complexes UV and fluorescence spectroscopy Antimicrobial activity Pathogenic microorganism 

Notes

Acknowledgements

The authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. TBAG 210T122, and Ankara University Grant No. 17B0430004.

Supplementary material

11164_2019_3741_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1247 kb)

References

  1. 1.
    C.J. Pedersen, J. Am. Chem. Soc. 89, 7017 (1967)CrossRefGoogle Scholar
  2. 2.
    N.S. Poonia, A.V. Bajaj, Chem. Rev. 79, 389 (1979)CrossRefGoogle Scholar
  3. 3.
    F. Vögtle, E. Weber, in Crown Ethers and Analogs, ed. by S. Patai, Z. Rappoport (Wiley, Chichester, 1989), p. 207CrossRefGoogle Scholar
  4. 4.
    Z. Hayvali, N. Gündüz, Z. Kiliç, E. Weber, J. Prakt. Chem. 341, 568 (1999)CrossRefGoogle Scholar
  5. 5.
    C. Sousa, C. Freire, B. De Castro, Molecules 8, 894 (2003)CrossRefGoogle Scholar
  6. 6.
    D. Liu, K. Tang, W. Liu, C. Su, X. Yan, M. Tan, Y. Tang, Dalton Trans. 39, 9763 (2010)CrossRefGoogle Scholar
  7. 7.
    K. Sako, T. Kakehi, S. Nakano, H. Oku, X.F. Shen, T. Iwanaga, M. Yoshikawa, K. Sugahara, S. Toyota, H. Takemura, T. Shinmyozu, M. Shiotsuka, H. Tatemitsu, Tetrahedron Lett. 55, 749 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Valeur, I. Leray, Coord. Chem. Rev. 205, 3 (2000)CrossRefGoogle Scholar
  9. 9.
    Q.Z. Yang, L.Z. Wu, H. Zhang, B. Chen, Z.X. Wu, L.P. Zhang, C.H. Tung, Inorg. Chem. 43, 5195 (2004)CrossRefGoogle Scholar
  10. 10.
    E.N. Ushakov, M.V. Alfimov, S.P. Gromov, Macroheterocycles 3, 189 (2010)CrossRefGoogle Scholar
  11. 11.
    H.S. Seo, S.H. Lee, J. Fluoresc. 21, 747 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Zhao, X. Chen, F. Guo, B. Gou, C. Yang, W. Xia, J. Lumin. 145, 486 (2014)CrossRefGoogle Scholar
  13. 13.
    J.-P. Malval, R. Lapouyade, Helv. Chim. Acta 84, 2439 (2001)CrossRefGoogle Scholar
  14. 14.
    S.K. Kim, M.Y. Bang, S.-H. Lee, K. Nakamura, S.-W. Cho, J. Yoon, J. Incl. Phenom. Macrocycl. Chem. 43, 71 (2002)CrossRefGoogle Scholar
  15. 15.
    D. Şahin, H. Yılmaz, Z. Hayvalı, Res. Chem. Intermed. 42, 6337 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Şahin, Y. Süzen, Z. Hayvalı, Hetoroatom Chem. 25, 43 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Güler, Z. Hayvali, H. Dal, T. Hökelek, Polyhedron 31, 688 (2012)CrossRefGoogle Scholar
  18. 18.
    K.K. Haldar, T. Sen, A. Patra, J. Phys. Chem. C 114, 4869 (2010)CrossRefGoogle Scholar
  19. 19.
    Z. Hayvalı, H. Güler, H. Öğütcü, N. Sarı, Med. Chem. Res. 23, 3652 (2014)CrossRefGoogle Scholar
  20. 20.
    G.W. Gokel, W.M. Leevy, E. Weber, Chem. Rev. 104, 2723 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Kralj, L. Tusek-Bozic, L. Frkanec, Chem. Med. Chem. 3, 1478 (2008)CrossRefGoogle Scholar
  22. 22.
    P.L. Caradoc-Davies, L.R. Hanton, W. Henderson, J. Chem. Soc. Dalton Trans. 19, 2749 (2001)CrossRefGoogle Scholar
  23. 23.
    Y. Kang, S.S. Lee, K.-M. Park, S.H. Lee, S.O. Kang, J. Ko, Inorg. Chem. 40, 7027 (2001)CrossRefGoogle Scholar
  24. 24.
    C. Seward, J. Chan, D. Song, S. Wang, Inorg. Chem. 42, 1112 (2003)CrossRefGoogle Scholar
  25. 25.
    W. Sun, Y. Cui, H. Liu, H. Zhao, W. Zhang, J. Mol. Struct. 1026, 133 (2012)CrossRefGoogle Scholar
  26. 26.
    T. Nakamura, K. Takeuchi, JP Patent 2003-238832A, 2003Google Scholar
  27. 27.
    N. Kinarivala, P.C. Trippier, Tetrahedron Lett. 55, 5386 (2014)CrossRefGoogle Scholar
  28. 28.
    T.F. Spande, H.M. Garraffo, M.W. Edwards, H.J.C. Yeh, L. Pannell, J.W. Daly, J. Am. Chem. Soc. 114, 3475 (1992)CrossRefGoogle Scholar
  29. 29.
    J.K. Lynch, M.W. Holladay, K.B. Ryther, H. Bai, C.N. Hsiao, H.E. Morton, D.A. Dickman, W. Arnold, S.A. King, Tetrahedron-Asymmetr. 9, 2791 (1998)CrossRefGoogle Scholar
  30. 30.
    J. Li, D. Yim, W.-D. Jang, J. Yoon, Chem. Soc. Rev. 46, 2437 (2017)CrossRefGoogle Scholar
  31. 31.
    V.K. Gupta, S. Chandra, S. Agarwal, Indian J. Chem. 42, 813 (2003)Google Scholar
  32. 32.
    M.J. Calverley, J. Dale, Acta Chem. Scand. B. 36, 241 (1982)CrossRefGoogle Scholar
  33. 33.
    B. Winkler, A.W.-H. Mau, L. Dai, Phys. Chem. Chem. Phys. 2, 291 (2000)CrossRefGoogle Scholar
  34. 34.
    A. Bilgin, B. Ertem, P. Dinc Agın, Y. Gok, S. Karslıoglu, Polyhedron 25, 3165 (2006)CrossRefGoogle Scholar
  35. 35.
    H. Öğütcü, N.K. Yetim, E.H. Özkan, O. Eren, G. Kaya, N. Sarı, A. Dişli, Pol. J. Chem. Technol. 19, 74 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Nithya, B. Gnanalakshmi, S.K. Pandian, Mar. Environ. Res. 71, 283 (2011)CrossRefGoogle Scholar
  37. 37.
    U. Schillinger, F.K. Lucke, Appl. Environ. Microbiol. 55(8), 1901 (1989)Google Scholar
  38. 38.
    M. Balouiri, M. Sadiki, K.S. Ibnsouda, J. Pharm. Anal. 6, 79 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, C. Perez, M.T. Colella, C. Olaizola, Y. Ontiveros, Int. J. Infect. Dis. 8, 39 (2004)CrossRefGoogle Scholar
  40. 40.
    C. Valgas, S.M. De Souza, E.F.A. Smânia, A. Smânia Jr., Braz. J. Microbiol. 38, 369 (2007)CrossRefGoogle Scholar
  41. 41.
    Y. Xiang, X. Liu, C. Mao, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, Y. Zheng, S. Wu, Mater. Sci. Eng. C 85, 214 (2018)CrossRefGoogle Scholar
  42. 42.
    Z. Liu, Y. Zhu, X. Liu, K.W.K. Yeung, S. Wu, Colloids Surf. B 151, 165 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Zhu, X. Liu, K.W.K. Yeung, P.K. Chu, S. Wu, Appl. Surf. Sci. 400, 14 (2017)CrossRefGoogle Scholar
  44. 44.
    C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, X. Wang, P.K. Chu, S. Wu, ACS Nano 11, 9010 (2017)CrossRefGoogle Scholar
  45. 45.
    E. Bozkır, N. Sarı, H. Ögütcü, J. Inorg. Organomet. Polym. Mater. 22, 1146 (2012)CrossRefGoogle Scholar
  46. 46.
    N. Sarı, N. Pişkin, H. Öğütcü, N. Kurnaz, Med. Chem. Res. 22, 580 (2013)CrossRefGoogle Scholar
  47. 47.
    D. Nartop, N. Sarı, H. Öğütcü, Chin. J. Inorg. Chem. 30, 921 (2014)Google Scholar
  48. 48.
    A. Altundas, N. Sarı, N. Colak, H. Ögütcü, Med. Chem. Res. 19, 576 (2010)CrossRefGoogle Scholar
  49. 49.
    D. Nartop, N. Sarı, A. Altundas, H. Ögütcü, J. Appl. Polym. Sci. 125, 1796 (2012)CrossRefGoogle Scholar
  50. 50.
    M. Barboiu, A. Mefrfre, Y.-M. Legrand, E. Petit, L. Marin, M. Pinteala, A.V.D. Lee, Supramol. Chem. 26, 223 (2014)CrossRefGoogle Scholar
  51. 51.
    N.S. Poonia, P. Bagdi, K.S. Sidhu, J. Incl. Phenom. 4, 43 (1986)CrossRefGoogle Scholar
  52. 52.
    B. Antonioli, D.J. Bray, J.K. Clegg, K. Gloe, K. Gloe, O. Kataeva, L.F. Lindoy, J.C. McMurtrie, P.J. Steel, C.J. Sumby, M. Wenzel, Dalton Trans. 40, 4783 (2006)CrossRefGoogle Scholar
  53. 53.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn. (Wiley, Chichester, 2001)Google Scholar
  54. 54.
    D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Graselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, 1991)Google Scholar
  55. 55.
    N. Ghildiyal, G.J. Nee Pant, M.S.M. Rawat, K. Singh, Spectrochim. Acta A 171, 507 (2017)CrossRefGoogle Scholar
  56. 56.
    Y. Liu, J.R. Han, H.Y. Zhang, Supramol. Chem. 16, 247 (2004)CrossRefGoogle Scholar
  57. 57.
    Z. Hayvalı, P. Köksal, J. Incl. Phenom. Macrocycl. Chem. 76, 369 (2013)CrossRefGoogle Scholar
  58. 58.
    C.J. Pedersen, H.K. Frensdorff, Angew. Chem. Internat. Edit. 11, 16 (1972)CrossRefGoogle Scholar
  59. 59.
    P.R. Mallison, M.R. Truter, J. Chem. Soc. Perkin 2, 1818 (1972)CrossRefGoogle Scholar
  60. 60.
    V.W. Bhagwat, H. Manohar, N.S. Poonia, Inorg. Nucl. Chem. Lett. 17, 207 (1981)CrossRefGoogle Scholar
  61. 61.
    R. Ziessel, L. Bonardi, P. Retailleau, G. Ulrich, J. Org. Chem. 71, 3093 (2006)CrossRefGoogle Scholar
  62. 62.
    S. Imama-Reja, N. Kumar, R. Sachdeva, V. Bhalla, M. Kumar, RSC Adv. 3, 17770 (2013)CrossRefGoogle Scholar
  63. 63.
    V. Bojinov, N. Georgiev, J. Chem. Technol. Metall. 46, 3 (2011)Google Scholar
  64. 64.
    F.R.F. Dias, J.S. Novais, T.A. do Nascimento Santos Devillart, W.A. da Silva, M.O. Ferreira, R.S. Loureiro, V.R. Campos, V.F. Ferreira, M.C.B.V. de Souza, H.C. Castro, A.C. Cunha, Eur. J. Med. Chem. 156, 1 (2018)CrossRefGoogle Scholar
  65. 65.
    N.B. Reddy, G.V. Zyryanov, G.M. Reddy, A. Balakrishna, A. Padmaja, V. Padmavathi, C.S. Reddy, J.R. Garcia, G. Sravya, J. Heterocycl. Chem.  https://doi.org/10.1002/jhet.3435
  66. 66.
    Z. Xu, X. Wang, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, J.C. Chung, P.K. Chu, S. Wu, ACS Appl. Mater. Interfaces 9, 39657 (2017)CrossRefGoogle Scholar
  67. 67.
    X. Xie, C. Mao, X. Liu, Y. Zhang, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, P.K. Chu, S. Wu, ACS Appl. Mater. Interfaces 9, 26417 (2017)CrossRefGoogle Scholar
  68. 68.
    I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004)CrossRefGoogle Scholar
  69. 69.
    A. Altundas, Y. Erdogan, H. Ögütcü, H.E. Kizil, G. Agar, Fresenius Environ. Bull. 25, 5411 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Serhat Koçoğlu
    • 1
    • 2
  • Hatice Ogutcu
    • 3
  • Zeliha Hayvalı
    • 1
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceAnkara UniversityAnkaraTurkey
  2. 2.Science and Technology Application and Research CenterBozok UniversityYozgatTurkey
  3. 3.Department of Field Crops, Faculty of AgricultureKırşehir Ahi Evran UniversityKırşehirTurkey

Personalised recommendations