Silica-coated MgAl2O4 nanoparticles supported phosphotungstic acid as an effective catalyst for synthesis of α-aminophosphonates

  • Reza Hajavazzade
  • Ali Reza Mahjoub
  • M. Kargarrazi


In this research, a recoverable catalyst (MgAl2O4@SiO2–PTA) was prepared by a simple utilization method. The prepared catalyst was characterized by XRD, FT-IR, SEM, EDX, ICP-AES, and BET techniques. The average crystallite size of MgAl2O4 was calculated to be 40 nm by the Debye–Scherrer formula. The nanocomposite was examined as a heterogeneous catalyst for synthesis of α-aminophosphonates under solvent-free conditions at room temperature. In this process, magnesium aluminate spinel (MgAl2O4), used as the base and supporting catalyst for H3PW12O40 (PTA), provides the recycling and reusing of the catalyst and also increases the efficiency of the reaction, which is due to the increase in the surface/volume ratio. In order to obtain optimal conditions, the synthesis of α-aminophosphonates reactions was investigated with different solvents and catalysts. The results showed that α-aminophosphonate prepared from the benzaldehyde and aniline reaction has higher efficiency and a shorter time than other reactions. The catalyst was recovered by simple filtration, and it can be recycled for at least five successive times without loss of catalytic activity.


Catalyst Nanocomposite α-Aminophosphonates Heterogeneous catalyst Solvent-free 



Financial support of this paper by Tehran North Branch, Islamic Azad University, and Tarbiat Modares University, is thankfully acknowledged. Also acknowledged is Reza Hajavazzade, Ph.D. student who did all the experiments, Alireza Mahjoub, Supervisor of the project, and Maryam Kargar Razi, Advisor of the project.

Supplementary material

11164_2019_3737_MOESM1_ESM.docx (357 kb)
Supplementary material 1 (DOCX 357 kb)


  1. 1.
    C.W. Lim, I.S. Lee, Nano Today 5, 412 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Shylesh, V. Schunemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 3428 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Abu-Rezig, H. Alper, D. Wang, M.L. Post, J. Am. Chem. Soc. 128, 5279 (2006)CrossRefGoogle Scholar
  4. 4.
    P. Riente, C. Mendoza, M.A. Pericas, J. Mater. Chem. 21, 7350 (2011)CrossRefGoogle Scholar
  5. 5.
    N.Y. He, C.S. Woo, H.G. Kim, H.I. Lee, Appl. Catal. A 281, 167 (2005)CrossRefGoogle Scholar
  6. 6.
    G.S. Kumar, M. Vishnuvarthan, M. Palanichamy, V. Murugesan, J. Mol. Catal. A: Chem. 260, 49 (2006)CrossRefGoogle Scholar
  7. 7.
    I.V. Kozhevnikov, J. Mol. Catal. A: Chem. 262, 86 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Kumar, P. Singh, S. Kumar, R. Chandra, S. Mozumdar, J. Mol. Catal. A: Chem. 276, 95 (2007)CrossRefGoogle Scholar
  9. 9.
    M.H. Bhure, I. Kumar, A.D. Natu, R.C. Chikate, C.V. Rode, Catal. Commun. 9, 1863 (2008)CrossRefGoogle Scholar
  10. 10.
    R.T. Carr, M. Neurock, E. Iglesia, J. Catal. 278, 78 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Ciftci, D. Varisli, C.K. Tokay, N.A. Sezgi, T. Dogu, Chem. Eng. J. 207–208, 85 (2012)CrossRefGoogle Scholar
  12. 12.
    A.M.I. lnicka, E. Bielanska, L.L. Dobrzynska, A. Bielanski, Appl. Catal. A 421–422, 91 (2012)Google Scholar
  13. 13.
    H. Haddadi, S. Moradpour Hafshejani, M. Riahi Farsani, A. Kazemi Babahydari, New J. Chem. 39, 9879 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Kaur, K. Griffin, B. Harrison, J. Catal. 208, 448 (2002)CrossRefGoogle Scholar
  15. 15.
    T. Tagawa, J. Amemiya, S. Goto, Appl. Catal. A 257, 19 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Kim, J.C. Jung, S.H. Yeom, K.Y. Lee, I.K. Song, J. Mol. Catal. A: Chem. 248, 21 (2006)CrossRefGoogle Scholar
  17. 17.
    Z. Obali, T. Dogu, Chem. Eng. J. 138, 548 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Kamiya, T. Okuhara, M. Misono, A. Miyaji, K. Tsuji, T. Nakajo, Catal. Surv. Asia 12, 101 (2008)CrossRefGoogle Scholar
  19. 19.
    X.M. Yan, P. Mei, J.H. Lei, Y.Z. Mia, L. Xiong, L.P. Guo, J. Mol. Catal. A: Chem. 304, 52 (2009)CrossRefGoogle Scholar
  20. 20.
    B.S. Li, W. Ma, J.J. Liu, C.Y. Han, S.L. Zuo, X.F. Li, Catal. Commun. 13, 101 (2011)CrossRefGoogle Scholar
  21. 21.
    G.S. Armatas, G. Bilis, M. Louloudi, J. Mater. Chem. 21, 299 (2011)CrossRefGoogle Scholar
  22. 22.
    R.M. Ladera, J.L.G. Fierro, M. Ojeda, S. Rojas, J. Catal. 312, 195 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Sun, L. Duan, Z. Guo, Y.D. Mu, M. Ma, L. Xu, Y. Zhang, N. Gu, J. Magn. Magn. Mater. 285, 65 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, H. Katepalli, T. Gu, T.A. Hatton, Y. Wang, Langmuir 34, 2674 (2018)CrossRefGoogle Scholar
  25. 25.
    M.J. Iqbal, B. Ismail, C. Rentenberger, H. Ipser, Mater. Res. Bull. 46, 2271 (2011)CrossRefGoogle Scholar
  26. 26.
    E. Amini, M. Rezaei, B. Nematollahi, J. Porous Mater. 22, 481 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Ismail, S.T. Hussain, S. Akram, Chem. Eng. J. 219, 395 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Li, Y.Q. Liu, Z.J. Yang, Mater. Res. Innov. 19, 20 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Sanjabi, A. Obeydavi, J. Alloy. Comp. 645, 535 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Habibi, Y. Wang, H. Arandiyan, M. Rezaei, Adv. Powder Technol. 28, 1249 (2017)CrossRefGoogle Scholar
  31. 31.
    H.B. Bafrooein, T. Ebadzadeh, Cera. Int. 39, 8933 (2013)CrossRefGoogle Scholar
  32. 32.
    R. Ianos, I. Lazau, C. Pacurariu, P. Barvinschi, Mater. Res. Bull. 43, 3408 (2008)CrossRefGoogle Scholar
  33. 33.
    N. Rahmat, Z. Yaakob, M. Pudukudy, N.A. Rahman, S.S. Jahaya, Powder Technol. 329, 409 (2018)CrossRefGoogle Scholar
  34. 34.
    P.V.M. Kutty, S. Dasgupta, Ceram. Int. 39, 7891 (2013)CrossRefGoogle Scholar
  35. 35.
    O. Olkhovyk, M. Jaroniec, J. Am. Chem. Soc. 127, 60 (2005)CrossRefGoogle Scholar
  36. 36.
    Z. Qiao, L. Zhang, M. Guo, Y. Liu, Q. Huo, Chem. Mater. 21, 3823 (2009)CrossRefGoogle Scholar
  37. 37.
    H. Chaudhuri, S. Dash, A. Sarkar, RSC Adv. 6, 99444 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Chaudhuri, S. Dash, R. Gupta, D.D. Pathak, A. Sarkar, Chem. Sel. 2, 1835 (2017)Google Scholar
  39. 39.
    H. Chaudhuri, R. Gupta, S. Dash, Catal. Lett. 148, 1703 (2018)CrossRefGoogle Scholar
  40. 40.
    X. Rao, Z. Song, L. He, Hetero Chem. 19, 512 (2008)CrossRefGoogle Scholar
  41. 41.
    I. Kraicheva, A. Bogomilova, I. Tsacheva, G. Momekov, K. Troev, Eur. J. Med. Chem. 44, 33 (2009)CrossRefGoogle Scholar
  42. 42.
    K. Ramakrishna, J. Mary Thomas, C. Sivasankar, J. Org. Chem. 81, 9826 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Nassar, I. Ahmed, I. Samir, Spectra Chem Act. Part A. Mol. Biomol. Spect 131, 329 (2014)CrossRefGoogle Scholar
  44. 44.
    S.M. Olhero, I. Ganesh, P.M.C. Torres, J.M.F. Ferreira, Langmuir 24, 9525 (2008)CrossRefGoogle Scholar
  45. 45.
    J. Puriwat, W. Chaitree, K. Suriye, S. Dokjampa, P. Praserthdam, J. Panpranot, Catal. Commun. 12, 80 (2010)CrossRefGoogle Scholar
  46. 46.
    M.Y. Nassar, I.S. Ahmed, Polyhedron 30, 2431 (2011)CrossRefGoogle Scholar
  47. 47.
    M.Y. Nassar, I.S. Ahmed, Mater. Res. Bull. 47, 2638 (2012)CrossRefGoogle Scholar
  48. 48.
    M.Y. Nassar, A.S. Attia, K.A. Alfallous, M.F. El-Shahat, Inorg. Chem. Act. 405, 362 (2013)CrossRefGoogle Scholar
  49. 49.
    M.Y. Nassar, Mater. Lett. 94, 112 (2013)CrossRefGoogle Scholar
  50. 50.
    T. Rakjumar, G.R. Rao, J. Chem. Sci. 120, 587 (2008)CrossRefGoogle Scholar
  51. 51.
    R. Khoshnavazi, L. Bahrami, F. Havasi, E. Naseri, RSC. Adv. 7, 11510 (2017)CrossRefGoogle Scholar
  52. 52.
    M. Tajbakhsh, A. Heydari, H. Alinezhad, M. Ghanei, S. Khaksar, Synthesis 3, 352 (2008)CrossRefGoogle Scholar
  53. 53.
    M. Ordonez, H. Rojas-Cabrera, C. Cativiela, Tetrahedron 65, 17 (2009)CrossRefGoogle Scholar
  54. 54.
    Z. Rezaei, H. Firouzabadi, N. Iranpoor, A. Ghaderi, M.R. Jafari, A.A. Jafari, H.R. Zare, Eur. J. Med. Chem 44, 4266 (2009)CrossRefGoogle Scholar
  55. 55.
    Z. Yan, B. Wu, X. Gao, M. Wang Chen, Y. Gui Zhou, Org. Lett. 18, 692 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Kollia, P. Elamathia, G. Chandrasekara, V. Rao Kattab, G. Balvantsinh Raoljib, Synth. Commun 48, 638 (2018)CrossRefGoogle Scholar
  57. 57.
    J. Akbari, A. Heydari, Tetra. Lett. 50, 4236 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Tehran North BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations