Influence of aging temperature and Mg/Zr molar ratio on transformation of C2H6 to C2H4 over VOx catalyst supported on Mg–Zr nanocomposite

  • Parisa Taghavinezhad
  • Mohammad Haghighi
  • Reza Alizadeh


To identify active and selective catalysts for oxidative dehydrogenation of ethane in presence of CO2, MgO–ZrO2 supports with varying amounts (0–100 wt%) of ZrO2 were synthesized via a coprecipitation method then impregnated with NH4VO3. In addition, the impact of the aging temperature on the structural properties and catalytic activity was examined. To characterize the prepared catalysts, X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, Brunauer–Emmett–Teller (BET) measurements, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy (DRS), and Fourier-transform infrared (FTIR) analysis were applied. The results of XRD and EDX analyses confirmed successful synthesis of MgO–ZrO2 nanocomposite. In presence of zirconia, the dispersion of V-species was improved, decreasing the particle size of vanadium oxide and thus promoting the catalytic activity. However, for higher concentration of ZrO2 on the support, agglomeration of particles was observed and the ratio of the tetragonal to monoclinic phase of zirconia decreased. On the other hand, the presence of MgO stabilized the tetragonal phase of zirconia. According to the applied characterization methods and catalytic activity tests, VOx/ZrO2(25)–MgO(75)-A was selected as the most active catalyst, showing C2H4 yield of 60.13 % as well as ethane conversion of 67.14 % at 700 °C. This catalyst remained stable during 10 h on stream at 700 °C, indicating that the presence of a proper amount of zirconia not only increased the activity of the catalyst but also prevented its deactivation.


Mg–Zr nanocomposite Mg/Zr molar ratio Structural/morphology evolution Oxidative dehydrogenation Ethylene 



The authors are grateful to Sahand University of Technology and Iran Nanotechnology Initiative Council for their complementary financial support of this research.


  1. 1.
    J. Luo, J. Wang, T. Wang, Chin. J. Chem. Eng. 26, 6 (2018)CrossRefGoogle Scholar
  2. 2.
    X.G. Li, Q.F. Lu, M.R. Huang, Small 4, 8 (2008)Google Scholar
  3. 3.
    X.G. Li, A. Li, M.R. Huang, Chemistry 14, 33 (2008)Google Scholar
  4. 4.
    X.G. Li, J. Li, M.R. Huang, Chemistry 15, 26 (2009)Google Scholar
  5. 5.
    X.-G. Li, A. Li, M.-R. Huang, Y. Liao, Y.-G. Lu, J. Phys. Chem. C 114, 45 (2010)CrossRefGoogle Scholar
  6. 6.
    X.-G. Li, Y. Liao, M.-R. Huang, V. Strong, R.B. Kaner, Chem. Sci. 4, 5 (2013)Google Scholar
  7. 7.
    M.-R. Huang, Y.-B. Ding, X.-G. Li, Y. Liu, K. Xi, C.-L. Gao, R.V. Kumar, ACS Appl. Mater. Interfaces 6, 24 (2014)CrossRefGoogle Scholar
  8. 8.
    X.G. Li, Y. Kang, M.R. Huang, J. Comb. Chem. 8, 5 (2006)Google Scholar
  9. 9.
    M.-R. Huang, H.-J. Lu, X.-G. Li, J. Mater. Chem. 22, 34 (2012)Google Scholar
  10. 10.
    C. Oliva, S. Cappelli, I. Rossetti, N. Ballarini, F. Cavani, L. Forni, Chem. Eng. J. 154, 1 (2009)CrossRefGoogle Scholar
  11. 11.
    Z. Skoufa, E. Heracleous, A.A. Lemonidou, Chem. Eng. Sci. 84, 48 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Taghavinezhad, M. Haghighi, R. Alizadeh, Microporous Mesoporous Mater. 261, 259 (2018)CrossRefGoogle Scholar
  13. 13.
    F. Dury, M.A. Centeno, E.M. Gaigneaux, P. Ruiz, Appl. Catal. A Gen. 247, 2 (2003)CrossRefGoogle Scholar
  14. 14.
    E.V. Kondratenko, J. Pérez-Ramı́rez, Appl. Catal. A Gen. 267, 1 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Held, J. Kowalska, K. Nowińska, Appl. Catal. B Environ. 64, 3 (2006)CrossRefGoogle Scholar
  16. 16.
    P. Delir Kheyrollahi Nezhad, M. Haghighi, F. Rahmani, Part. Sci. Technol. 36, 8 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Rahmani, M. Haghighi, B. Mohammadkhani, Microporous Mesoporous Mater. 242, 34 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Taghavinezhad, M. Haghighi, R. Alizadeh, Korean J. Chem. Eng. 34, 5 (2017)CrossRefGoogle Scholar
  19. 19.
    O. Ovsitser, E.V. Kondratenko, Catal. Today 142, 3 (2009)CrossRefGoogle Scholar
  20. 20.
    X. Li, B. Yan, S. Yao, S. Kattel, J.G. Chen, T. Wang, Appl. Catal. B Environ. 231, 108 (2018)CrossRefGoogle Scholar
  21. 21.
    V. Ducarme, H.M. Swaan, A. Thaib, GA Martin, in Studies in Surface Science and Catalysis, ed. by M. de Pontes, R.L. Espinoza, C.P. Nicolaides, J.H. Scholtz, M.S. Scurrell (Elsevier, Amsterdam, 1997), p. 361Google Scholar
  22. 22.
    N.N. Ha, N.D. Huyen, L.M. Cam, Appl. Catal. A Gen. 407, 1 (2011)CrossRefGoogle Scholar
  23. 23.
    I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, V.I. Zaikovskii, K.J. Klabunde, Catal. Today 144, 3 (2009)CrossRefGoogle Scholar
  24. 24.
    M.A. Bañares, I.E. Wachs, J. Raman Spectrosc. 33, 5 (2002)CrossRefGoogle Scholar
  25. 25.
    R. Gudgila, C.A. Leclerc, Ind. Eng. Chem. Res. 50, 14 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Wang, K. Murata, T. Hayakawa, S. Hamakawa, K. Suzuki, Catal. Lett. 59, 2 (1999)Google Scholar
  27. 27.
    S. Chakraborty, S.C. Nayak, G. Deo, Catal. Today 254, 62 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Ziolek, A. Lewandowska, B. Grzybowska, A. Klisińska, React. Kinetics. Catal. Lett. 80, 2 (2003)Google Scholar
  29. 29.
    E. Heracleous, A.F. Lee, I.A. Vasalos, A.A. Lemonidou, Catal. Lett. 88, 1 (2003)CrossRefGoogle Scholar
  30. 30.
    A. Qiao, V.N. Kalevaru, J. Radnik, A. Düvel, P. Heitjans, A.S.H. Kumar, P.S.S. Prasad, N. Lingaiah, A. Martin, Ind. Eng. Chem. Res. 53, 49 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Talati, M. Haghighi, F. Rahmani, RSC Adv. 6, 50 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Rahmani, M. Haghighi, S. Mahboob, Ultrason. Sonochem. 33, 150 (2016)CrossRefGoogle Scholar
  33. 33.
    E. Asghari, M. Haghighi, F. Rahmani, J. Appl. Res. Chem. 10, 2 (2016)Google Scholar
  34. 34.
    C. Eisenmenger-Sittner, C. Nöbauer, M. Mozetic, J. Kovač, R. Zaplotnik, Surf. Coat. Technol. 347, 270 (2018)CrossRefGoogle Scholar
  35. 35.
    W. Harlow, A.C. Lang, B.J. Demaske, S.R. Phillpot, M.L. Taheri, Scr. Mater. 145, 95 (2018)CrossRefGoogle Scholar
  36. 36.
    W. Yan, Q.-Y. Kouk, S.X. Tan, J. Luo, Y. Liu, J. CO2 Util. 15, 154 (2016)CrossRefGoogle Scholar
  37. 37.
    K. Morita, K. Hiraga, Y. Sakka, J. Am. Ceram. Soc. 85, 7 (2004)CrossRefGoogle Scholar
  38. 38.
    A. Gedanken, R. Reisfeld, E. Sominski, O. Palchik, Y. Koltypin, G. Panczer, M. Gaft, H. Minti, J. Phys. Chem. B 104, 30 (2000)CrossRefGoogle Scholar
  39. 39.
    H. Xie, J. Lu, M. Shekhar, J.W. Elam, W.N. Delgass, F.H. Ribeiro, E. Weitz, K.R. Poeppelmeier, ACS Catal. 3, 1 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Zhang, L Chi, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), p. 1Google Scholar
  41. 41.
    X. Shi, S. Ji, K. Wang, Catal. Lett. 125, 3 (2008)CrossRefGoogle Scholar
  42. 42.
    C.P. Kumar, S. Gaab, T.E. Müller, J.A. Lercher, Top. Catal. 50, 1 (2008)CrossRefGoogle Scholar
  43. 43.
    S. Xia, X. Guo, D. Mao, Z. Shi, G. Wu, G. Lu, RSC Adv. 4, 93 (2014)Google Scholar
  44. 44.
    M.B. Gawande, S.N. Shelke, P.S. Branco, A. Rathi, R.K. Pandey, Appl. Organomet. Chem. 26, 8 (2012)CrossRefGoogle Scholar
  45. 45.
    R. Brenier, A. Gagnaire, Thin Solid Films 392, 1 (2001)CrossRefGoogle Scholar
  46. 46.
    L.S. Escandón, D. Niño, E. Díaz, S. Ordóñez, F.V. Díez, Catal. Commun. 9, 13 (2008)CrossRefGoogle Scholar
  47. 47.
    N. Mimura, M. Okamoto, H. Yamashita, S.T. Oyama, K. Murata, J. Phys. Chem. B 110, 43 (2006)CrossRefGoogle Scholar
  48. 48.
    A. Khodakov, J. Yang, S. Su, E. Iglesia, A.T. Bell, J. Catal. 177, 2 (1998)CrossRefGoogle Scholar
  49. 49.
    R. Vidal-Michel, K.L. Hohn, J. Catal. 221, 1 (2004)CrossRefGoogle Scholar
  50. 50.
    L. Zhang, Z. Gao, L. Bao, H. Ma, Int. J. Hydrogen Energy 43, 19 (2018)Google Scholar
  51. 51.
    W. Li, Z. Zhao, Y. Jiao, G. Wang, Chin. J. Catal. 37, 12 (2016)CrossRefGoogle Scholar
  52. 52.
    T. Klimova, M.L. Rojas, P. Castillo, R. Cuevas, J. Ramírez, Microporous Mesoporous Mater. 20, 4 (1998)CrossRefGoogle Scholar
  53. 53.
    E. Hong, S.W. Baek, M. Shin, Y.-W. Suh, C.-H. Shin, J. Ind. Eng. Chem. 54, 44 (2017)CrossRefGoogle Scholar
  54. 54.
    A.M. Abdelghany, H.A. ElBatal, Mater. Des. 89, 568 (2016)CrossRefGoogle Scholar
  55. 55.
    P. Sadeghpour, M. Haghighi, Adv. Powder Technol. 29, 5 (2018)CrossRefGoogle Scholar
  56. 56.
    S. Mahzoon, S.M. Nowee, M. Haghighi, Renew. Energy 127, 433 (2018)CrossRefGoogle Scholar
  57. 57.
    P. Jabbarnezhad, M. Haghighi, P. Taghavinezhad, Fuel Process. Technol. 126, 392 (2014)CrossRefGoogle Scholar
  58. 58.
    E. Asghari, M. Haghighi, F. Rahmani, J. Mol. Catal. A: Chem. 418–419, 115 (2016)CrossRefGoogle Scholar
  59. 59.
    G. Mitran, R. Ahmed, E. Iro, S. Hajimirzaee, S. Hodgson, A. Urdă, M. Olea, I.-C. Marcu, Catal. Today 306, 260 (2018)CrossRefGoogle Scholar
  60. 60.
    R. Bulánek, P. Čičmanec, M. Setnička, Phys. Procedia 44, 195 (2013)CrossRefGoogle Scholar
  61. 61.
    P. Michorczyk, P. Pietrzyk, J. Ogonowski, Microporous Mesoporous Mater. 161, 56 (2012)CrossRefGoogle Scholar
  62. 62.
    T. Shishido, K. Shimamura, K. Teramura, T. Tanaka, Catal. Today 185, 1 (2012)CrossRefGoogle Scholar
  63. 63.
    X. Lin, C.A. Hoel, W.M.H. Sachtler, K.R. Poeppelmeier, E. Weitz, J. Catal. 265, 1 (2009)CrossRefGoogle Scholar
  64. 64.
    F. Rahmani, M. Haghighi, J. Nat. Gas Sci. Eng. 27, 1684 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Chemical Engineering FacultySahand University of TechnologySahand New Town, TabrizIran
  2. 2.Reactor and Catalysis Research Center (RCRC)Sahand University of TechnologySahand New Town, TabrizIran

Personalised recommendations