Advertisement

Propyl–SO3H functionalized SBA-15: Microwave-mediated green synthesis of biologically active multi-substituted imidazole scaffolds

  • Jenifer J. Gabla
  • Dharmesh R. Lathiya
  • Akash A. Revawala
  • Kalpana C. MaheriaEmail author
Article
  • 49 Downloads

Abstract

Propylsulfonic acid functionalized Santa Barbara Amorphous-15 (SBA-15–Pr–SO3H) catalyst has been synthesized using a surface modification of mesoporous SBA-15 via the one-pot co-condensation method. The synthesized SBA-15–Pr–SO3H has been characterized by peculiar characterization techniques such as small- and wide-angle XRD, SEM–EDX, TEM, TG–DTA, acidity, FT-IR, Py-FT-IR and BET surface area analysis. The catalytic activity of synthesized catalyst has been studied towards solvent-free MW irradiation for the green and rapid synthesis of multi-substituted imidazoles, [2,4,5-triphenyl-1(H)-imidazole (tri-imidazole) and 1-benzyl-2,4,5-triphenyl-1H-imidazole (tetra-imidazole)]. The SBA-15–Pr–SO3H catalyst was found to be an efficient and recyclable solid acid catalyst and this solvent-free MW protocol afforded products in good to excellent yields of both, tri and tetra imidazoles (> 95%) within shorter reaction time (3 min) at 600 W as compared to the SBA-15 and other existing protocols. The applicability of this protocol was further explored by conducting the experiments in the presence of varied solvents and substituted aldehydes to generate a library of both, tri- and tetra-imidazole scaffolds. The catalyst was found to be reusable up to several runs without loss of its catalytic activity. This report allows the rapid and scalable access to a variety of multi-substituted imidazoles using SBA-15–Pr–SO3H, as heterogeneous catalyst.

Graphical abstract

SBA-15–Pr–SO3H catalyzed solvent-free MW assisted green synthesis of multi-substituted imidazoles via MCRs.

Keywords

Green chemistry SBA-15–Pr–SO3H catalyst Tri and tetra imidazoles Solvent-free microwave irradiation technique MCRs 

Notes

Acknowledgements

The authors are grateful to the director, SVNIT, Surat, for providing research and financial assistance. This research was supported by a research grant for assistant professor No: Dean (R&C)/1503/2013-14 from Sardar Vallabhbhai National Institute of Technology, Surat (SVNIT, Surat). The authors would also like to thank IISER-Mohali, India, for SAXS characterization facility.

Supplementary material

11164_2018_3707_MOESM1_ESM.docx (99 kb)
Supplementary material 1 (DOCX 98 kb)

References

  1. 1.
    J.P. Tierney, P. Lidstrom, B. Wathey, J. Westman, Tetrahedron 57, 9225 (2005)Google Scholar
  2. 2.
    D.M. D’Souza, T.J.J. Müller, Chem. Soc. Rev. 36, 1095 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Rivera-Hernández, I.S. López-Jimeno, G.A. Carmona-Reyes, R. Alfredo-Toscano, J.G. Penieres-Carrillo, C. Álvarez-Toledano, Tetrahedron Lett. 56, 4829 (2015)CrossRefGoogle Scholar
  4. 4.
    J.J. Gabla, S.R. Mistry, K.C. Maheria, Catal. Sci. Technol. 7, 5154 (2017)CrossRefGoogle Scholar
  5. 5.
    A.R. Karimi, Z. Alimohammadi, M.M. Amini, Mol. Divers. 14, 635 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Radziszewski, Chem. Ber. 15, 1493 (1882)CrossRefGoogle Scholar
  7. 7.
    F. Japp, H. Robenson, Chem. Ber. 15, 1268 (1882)CrossRefGoogle Scholar
  8. 8.
    G. Drefahl, H. Herma, Chem. Ber. 93, 486 (1960)CrossRefGoogle Scholar
  9. 9.
    I. Lantos, W.Y. Zhang, X. Shui, D.S. Eggleston, J. Org. Chem. 58, 7092 (1993)CrossRefGoogle Scholar
  10. 10.
    C. Zhang, E.J. Moran, T.F. Woiwode, K.M. Short, A.M.M. Mjalli, Tetrahedron Lett. 37, 751 (1996)CrossRefGoogle Scholar
  11. 11.
    H. B. Lee, S. Balasubramanian, Org. Lett. 2, 323 (2000)CrossRefGoogle Scholar
  12. 12.
    C.F. Claiborne, N.J. Liverton, K.T. Nguyen, Tetrahedron Lett. 39, 8939 (1998)CrossRefGoogle Scholar
  13. 13.
    J.J. Gabla, S.R. Mistry, K.C. Maheria, J. Catal. Catal. 4, 20 (2017)Google Scholar
  14. 14.
    S. Balalaie, A. Arabanian, Green Chem. 2, 274 (2000)CrossRefGoogle Scholar
  15. 15.
    M.C. Road, S. Nagar, M.L. Limited, A. Industrial, B. Village, J. Mandal, Rasayan J. Chem. 3, 335 (2010)Google Scholar
  16. 16.
    H.R. Shaterian, M. Ranjbar, J. Mol. Liq. 160, 40 (2011)CrossRefGoogle Scholar
  17. 17.
    S.A. Siddiqui, U.C. Narkhede, S.S. Palimkar, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Tetrahedron 61, 3539 (2005)CrossRefGoogle Scholar
  18. 18.
    J. Safari, S. Gandomi-ravandi, Z. Akbari, J. Adv. Res. 4, 509 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Wang, R. Mason, D. VanDerveer, K. Feng, X.R. Bu, J. Org. Chem. 68, 5415 (2003)CrossRefGoogle Scholar
  20. 20.
    A. Shaabani, A. Rahmati, J. Mol. Catal. A Chem. 249, 246 (2006)CrossRefGoogle Scholar
  21. 21.
    D. Morawala, A. Dalai, K.C. Maheria,J. Por. Mater. 26, (2018)Google Scholar
  22. 22.
    S.R. Mistry, K.C. Maheria, J. Catal. Catal. 1, 1 (2014)Google Scholar
  23. 23.
    S.R. Mistry, K.C. Maheria, J. Mol. Catal. A Chem. 355, 210 (2012)CrossRefGoogle Scholar
  24. 24.
    S.R. Mistry, R.S. Joshi, K.C. Maheria, J. Chem. Sci. 123, 427 (2011)CrossRefGoogle Scholar
  25. 25.
    S.R. Mistry, R.S. Joshi, S.K. Sahoo, K.C. Maheria, Catal. Lett. 141, 1541 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Chaudhuri, S. Dash, A. Sarkar, Ind. Eng. Chem. Res. 56, 2943 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Cao, Z. Jia, S. Ji, J. Hu, J. Nat. Gas Chem. 20, 377 (2011)CrossRefGoogle Scholar
  28. 28.
    V.F. Vavsari, G. Mohammadi Ziarani, A. Badiei, RSC Adv. 5, 91686 (2015)CrossRefGoogle Scholar
  29. 29.
    R.H. Vekariya, H.D. Patel, Synth. Commun. 45, 1031 (2015)CrossRefGoogle Scholar
  30. 30.
    K.A. Shah, J.K. Parikh, K.C. Maheria, Catal. Today 237, 29 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Teimouri, A.N. Chermahini, J. Mol. Catal. A Chem. 346, 39 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Samai, G.C. Nandi, P. Singh, M.S. Singh, Tetrahedron 65, 10155 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Maleki, H. Keshvari Shirvan, F. Taimazi, E. Akbarzadeh, Int. J. Org. Chem. 2, 93 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Babu, V. Surendhar, Hetero. Lett. 4, 235 (2014)Google Scholar
  35. 35.
    B.F. Mirjalili, A.H. Bamoniri, L. Zamani, Sci. Iran. 19, 565 (2012)CrossRefGoogle Scholar
  36. 36.
    R. Yan, L. Ming, Z. Zong-Ze, Molecules 20, 20286 (2015)CrossRefGoogle Scholar
  37. 37.
    N.M. Kalkhorani, M.M. Heravi,J. Chem. 1 (2013)Google Scholar
  38. 38.
    H.T. Najmeh Zahedi, A. Javid, M. Kazem Mohammadi, Bull. Chem. Soc. Ethiop. 32, 157 (2018)CrossRefGoogle Scholar
  39. 39.
    K.F. Shelke, S.B. Sapkal, G.K. Kakade, B.B. Shingate, M.S. Shingare, Green Chem. Lett. Rev. 3, 27 (2010)CrossRefGoogle Scholar
  40. 40.
    G.K. Sharma, N.K. Sharma, D. Pathak, Ind. J. Chem. 52B, 266 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jenifer J. Gabla
    • 1
  • Dharmesh R. Lathiya
    • 1
  • Akash A. Revawala
    • 1
  • Kalpana C. Maheria
    • 1
    Email author
  1. 1.Applied Chemistry DepartmentSardar Vallabhbhai National Institute of Technology (SVNIT)SuratIndia

Personalised recommendations