Research on Chemical Intermediates

, Volume 45, Issue 4, pp 1815–1827 | Cite as

Significant improved selectivity of a fluorescent sensor for Al3+ made from a fluorinated rhodamine B Schiff base

  • Chao Wan
  • Hui LiEmail author
  • Jianzhi Wang
  • Feng Wang
  • Ge Shu
  • Luying He


Two rhodamine B-based Schiff bases (RBF, RBC) with different substituent groups (–F and –COOH) have been synthesized. In order to study the sensing properties of two Schiff bases for metal ions, the interaction of Schiff bases with different metal ions was studied over UV–Vis absorption spectra and photofluorescent spectra. The results show that the RBF is a turn-on fluorescent chemosensor for Al3+ ions with being highly selective and sensitive in ethanol. The value of the fluorescence increase factor shows a good linear relationship with the concentration of Al3+ in the range of 1–9 μM with a detection limit of 0.8 μM. Meanwhile, upon addition of Al3+ or Fe3+ ions, the fluorescence intensity of RBC increased significantly (\(\frac{{F_{{{\text{Fe}}^{3 + } }} }}{{F_{{{\text{Al}}^{3 + } }} }} = 0.77\)). These studies show that, compared with the carboxyl group (–COOH), the introduction of fluorine atoms (–F) to a rhodamine B-based Schiff base can significantly improve selectivity to Al3+.


Fluorescent sensor Al3+ ion Rhodamine B Fluorine atoms 



The authors are grateful for the research support from the National Natural Science Foundation of China [No. 51808414], China Postdoctoral Science Foundation [No. 2017M612520], National Science Foundation of Hubei Province of China [Nos. 2016CFB264, 2018CFB108] and the Program of Hubei Provincial Department of Education, China [No. Q20171507].

Supplementary material

11164_2018_3705_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1495 kb)


  1. 1.
    G. Berthon, Coordin. Chem. Rev. 149, 241 (1996)CrossRefGoogle Scholar
  2. 2.
    G.R. Legendre, A.C. Alfrey, Clin. Chem. 22, 53 (1976)Google Scholar
  3. 3.
    D.P. Perl, A.R. Brody, Science 208, 297 (1980)CrossRefGoogle Scholar
  4. 4.
    D.P. Perl, D.C. Gajdusek, R.M. Garruto, R.T. Yanagihara, C.J. Gibbs, Science 217, 1053 (1982)CrossRefGoogle Scholar
  5. 5.
    M.H. Mashhadizadeh, H. Khani, Anal. Methods 2, 24 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Fan, J. Qin, T. Li, B. Wang, Z. Yang, J. Lumin. 155, 84 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Li, J. Wang, S. Zhang, C. Gong, F. Wang, RSC Adv. 8, 31889 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Busschaert, C. Caltagirone, W. Van Rossom, P.A. Gale, Chem. Rev. 115, 8038 (2015)CrossRefGoogle Scholar
  9. 9.
    P.D. Beer, P.A. Gale, Angew. Chem. 40, 486 (2001)CrossRefGoogle Scholar
  10. 10.
    R. Martinezmanez, F. Sancenon, Cheminform 35, 4419 (2004)Google Scholar
  11. 11.
    T.H. Maren, Anal. Chem. 19, 487 (1947)CrossRefGoogle Scholar
  12. 12.
    K.-P. Wang, J.-P. Chen, S.-J. Zhang, Y. Lei, H. Zhong, S. Chen, X.-H. Zhou, Z.-Q. Hu, Anal. Bioanal. Chem. 409, 5547 (2017)CrossRefGoogle Scholar
  13. 13.
    K.-P. Wang, Z.-H. Jin, H.-S. Shang, C.-D. Lv, Q. Zhang, S. Chen, Z.-Q. Hu, J. Fluoresc. 27, 629 (2017)CrossRefGoogle Scholar
  14. 14.
    D.T. Quang, J.-S. Wu, D.L. Nguyen, T. Duong, D.D. Nguyen, C.B. Nguyen, P.T. Quy, Spectrochim. Acta Part A 78A, 753 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Venkatesan, N. Thirumalivasan, S.-P. Wu, RSC Adv. 7, 21733 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Rull-Barrull, M. d’Halluin, E. Le Grognec, F.X. Felpin, Tetrahedron Lett. 58, 505 (2017)CrossRefGoogle Scholar
  17. 17.
    S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, J. Am. Chem. Soc. 128, 14150 (2006)CrossRefGoogle Scholar
  18. 18.
    T. Zhou, X. Chen, Q. Hua, W. Lei, Q. Hao, B. Zhou, C. Su, X. Bao, Sens. Actuators B 253, 292 (2017)CrossRefGoogle Scholar
  19. 19.
    W. Su, S. Yuan, E. Wang, J. Fluoresc. 27, 1871 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Lan, F.-H. Wang, X.-J. Xi, C.-W. Cheng, W. Lei, M.-Z. Xia, F.-Y. Wang, Anal. Sci. 32, 1223 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, X.-B. Zhang, Z.-X. Han, L. Qiao, C.-Y. Li, L.-X. Jian, G.-L. Shen, R.-Q. Yu, Anal. Chem. 81, 7022 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Xiang, A. Tong, P. Jin, Y. Ju, Org. Lett. 8, 2863 (2006)CrossRefGoogle Scholar
  23. 23.
    B. Sen, M. Mukherjee, S. Banerjee, S. Pal, P. Chattopadhyay, Dalton Trans. 44, 8708 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Li, Y. Zeng, F. Chen, Y. Gao, Q. Hu, Z. Pan, Wuhan Gongcheng Daxue Xuebao 33, 1 (2011)Google Scholar
  25. 25.
    H.-Q. Wu, Y. Wang, X.-Q. Tan, J. Luo, X.-Y. Liu, Gongneng Cailiao 43, 3468 (2012)Google Scholar
  26. 26.
    X. Qiu, S. Han, Y. Hu, M. Gao, H. Wang, J. Mater. Chem. A 2, 1493 (2014)CrossRefGoogle Scholar
  27. 27.
    J.-M. An, Z.-Y. Yang, M.-H. Yan, T.-R. Li, J. Lumin. 139, 79 (2013)CrossRefGoogle Scholar
  28. 28.
    L. Dong, C. Wu, X. Zeng, L. Mu, S.-F. Xue, Z. Tao, J.-X. Zhang, Sens. Actuators B 145, 433 (2010)CrossRefGoogle Scholar
  29. 29.
    F. Zhou, T.-H. Leng, Y.-J. Liu, C.-Y. Wang, P. Shi, W.-H. Zhu, Dyes Pigments 142, 429 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Li, Q. Hu, X. Yu, Y. Zeng, C. Cao, X. Liu, J. Guo, Z. Pan, J. Fluoresc. 21, 2005 (2011)CrossRefGoogle Scholar
  31. 31.
    L. Tang, F. Li, M. Liu, R. Nandhakumar, Spectrochim. Acta Part A 78A, 1168 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Ni, B. Li, L. Zhang, H. Zhao, H. Jiang, Sens. Actuators B 215, 174 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Wan, K. Zhang, C. Li, Y. Li, S. Niu, Sens. Actuators B 246, 696 (2017)CrossRefGoogle Scholar
  34. 34.
    J.Y. Kwon, Y.J. Jang, Y.J. Lee, K.M. Kim, M.S. Seo, W. Nam, J. Yoon, J. Am. Chem. Soc. 127, 10107 (2005)CrossRefGoogle Scholar
  35. 35.
    T. Zhan, X. Liu, S. Lu, W. Hou, Appl. Catal. B 205, 551 (2017)CrossRefGoogle Scholar
  36. 36.
    X. Huang, Z. Lu, Z. Wang, C. Fan, W. Fan, X. Shi, H. Zhang, M. Pei, Dyes Pigments 128, 33 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Tang, J. Han, Y. Wang, L. Ni, X. Bao, L. Wang, W. Zhang, Spectrochim. Acta Part A 173, 721 (2017)CrossRefGoogle Scholar
  38. 38.
    H.N. Kim, S. Nam, K.M.K. Swamy, Y. Jin, X. Chen, Y. Kim, S. Kim, S. Park, J. Yoon, Analyst 136, 1339 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Xiang, A. Tong, Luminescence 23, 28 (2008)CrossRefGoogle Scholar
  40. 40.
    W. Du, Y. Cheng, W. Shu, B. Wu, Z. Kong, Z. Qi, Can. J. Chem. 95, 751 (2017)CrossRefGoogle Scholar
  41. 41.
    A.J. Weerasinghe, C. Schmiesing, E. Sinn, Tetrahedron 67, 2833 (2011)CrossRefGoogle Scholar
  42. 42.
    H. Li, S. Zhang, C. Gong, Y. Li, Y. Liang, Z. Qi, Z. Wu, Synth. Met. 198, 225 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Yu, R. Yuan, C.J.R. Shi, W. Zhou, L. Wei, Z. Li, Dyes Pigments 99, 887 (2013)CrossRefGoogle Scholar
  44. 44.
    Z. Yang, M. She, J. Zhang, X. Chen, Y. Huang, H. Zhu, P. Liu, J. Li, Z. Shi, Sens. Actuators B 176, 482 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Sahana, A. Banerjee, S. Das, S. Lohar, D. Karak, B. Sarkar, S.K. Mukhopadhyay, A.K. Mukherjee, D. Das, Org. Biomol. Chem. 9, 5523 (2011)CrossRefGoogle Scholar
  46. 46.
    R. Wang, G.-Q. Jiang, X.-H. Li, Inorg. Chim. Acta 455, 247 (2017)CrossRefGoogle Scholar
  47. 47.
    W. Shen, L. Wang, M. Chen, H. Lu, Quim. Nova 39, 1151 (2016)Google Scholar
  48. 48.
    A. Luo, H. Wang, Y. Wang, Q. Huang, Q. Zhang, Spectrochim. Acta Part A 168, 37 (2016)CrossRefGoogle Scholar
  49. 49.
    H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, Chem. Soc. Rev. 37, 1465 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and PharmacyWuhan Institute of TechnologyWuhanPeople’s Republic of China

Personalised recommendations