Advertisement

Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium

  • Md. Rashidul IslamEmail author
  • Ashok Kumar Chakraborty
  • M. A. Gafur
  • Md. Aminur Rahman
  • Md. Hamidur Rahman
Article
  • 62 Downloads

Abstract

Graphitic-C3N4/TiO2 nanocomposite was prepared as a photocatalyst (PC) active under visible light (λ ≥ 420 nm) by preparation of graphitic carbon nitride (g-C3N4) from melamine followed by an effective easy impregnation method. Several g-C3N4/TiO2 composites containing 1 to 12 wt% g-C3N4 were synthesized and characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), photoluminescence (PL) spectroscopy, diffusion reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) measurements. A photocatalytic mechanism is proposed based on the relative positions of the energy bands of the two constituents. Compared with its individual components, g-C3N4/TiO2 demonstrated unusually high photocatalytic activity for phenol decomposition in aqueous phase under visible-light irradiation. The heterojunction was optimized in the 5 wt% g-C3N4/TiO2 nanocomposite due to the well-matched bandgap structure (optimum loading) and excellent electron–hole pair separation in the conduction and valence band of TiO2 and g-C3N4, respectively. After 2 h of visible-light irradiation, 68 % degradation was observed when using this optimum composition. The performance was slightly decreased (to 66 %) after recycling of the catalyst four times (used a total of five times), but remained reliable for industrial applications considering other factors. In this system, TiO2 (Degussa P25) seems to play the principal PC role, while g-C3N4 acts as a sensitizer for absorption of visible light. Due to the enhanced visible-light absorption ability enabled by g-C3N4 in the composite, stable electron–hole (e–h+) pairs produced at the interface of the heterojunction lead to generation of highly reactive free radicals (·O2, ·OH, etc.) which together initiate degradation of phenol but individually suffer from some limitation that must be overcome. The thermal stability and recycling efficiency of this PC will enable its use in industrial applications as a cost-effective sustainable cleanup candidate.

Graphical abstract

The prepared g-C3N4/TiO2 exhibits stable electron–hole (e–h+) pair separation at the heterojunction under visible light for enhanced degradation of organic pollutants via a redox mechanism. The g-C3N4 loading affects the photocatalytic activity, with the 5 wt% g-C3N4/TiO2 composite exhibiting the highest degradation, with recycling.

Keywords

g-C3N4/TiO2 composite Heterojunction Visible light Electron–hole pairs Degradation Recycling 

References

  1. 1.
    H. Babich, D. Davis, Regul. Toxicol. Pharmacol. 1, 1 (1981)Google Scholar
  2. 2.
    M. Ahmaruzzaman, Adv. Colloid Interface Sci. 166, 1 (2011)Google Scholar
  3. 3.
    D. Malik, C. Jain, A.K. Yadav, Appl. Water Sci. 7, 5 (2017)Google Scholar
  4. 4.
    Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 5, 5 (2012)Google Scholar
  5. 5.
    A. Demirbas, Prog. Energy Combust. Sci. 31, 2 (2005)Google Scholar
  6. 6.
    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 6 (2002)Google Scholar
  7. 7.
    T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 22 (2014)Google Scholar
  8. 8.
    H. Yan, H. Yang, J. Alloys Compd. 509, 4 (2011)Google Scholar
  9. 9.
    M. Umar and H.A. Aziz, Organic Pollutants-Monitoring, Risk and Treatment. (InTech, 2013)Google Scholar
  10. 10.
    J. Lei, Y. Chen, F. Shen, L. Wang, Y. Liu, J. Zhang, J. Alloys Compd. 631, 328 (2015)Google Scholar
  11. 11.
    S. Ahmed, M. Rasul, R. Brown, M. Hashib, J. Environ. Manag. 92, 3 (2011)Google Scholar
  12. 12.
    N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, J. Colloid Interface Sci. 417, 402 (2014)PubMedGoogle Scholar
  13. 13.
    J. Zhang, F. Huang, Appl. Surf. Sci. 358, 287 (2015)Google Scholar
  14. 14.
    J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Appl. Catal. B Environ. 206, 406 (2017)Google Scholar
  15. 15.
    C. Miranda, H. Mansilla, J. Yáñez, S. Obregón, G. Colón, J. Photochem. Photobiol. A Chem. 253, 16 (2013)Google Scholar
  16. 16.
    H. Li, L. Zhou, L. Wang, Y. Liu, J. Lei, J. Zhang, Phys. Chem. Chem. Phys. 17, 26 (2015)Google Scholar
  17. 17.
    G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47, 24 (2008)Google Scholar
  18. 18.
    K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces 7, 17 (2015)Google Scholar
  19. 19.
    C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 7 (2012)Google Scholar
  20. 20.
    S. Obregón, G. Colón, Appl. Catal. B Environ. 144, 775 (2014)Google Scholar
  21. 21.
    X. Lu, Q. Wang, D. Cui, J. Mater. Sci. Technol. 26, 10 (2010)Google Scholar
  22. 22.
    L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Res. Chem. Intermed. 43, 4 (2017)Google Scholar
  23. 23.
    M.N. Chong, B. Jin, C.W. Chow, C. Saint, Water Res. 44, 10 (2010)Google Scholar
  24. 24.
    U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C Photochem. Rev. 9, 1 (2008)Google Scholar
  25. 25.
    W.-Y. Wang, Y. Ku, Colloids Surf. A Physicochem. Eng. Asp. 302, 1 (2007)Google Scholar
  26. 26.
    S.S. Chin, K. Chiang, A.G. Fane, J. Membr. Sci. 275, 1 (2006)Google Scholar
  27. 27.
    M. Minella, V. Maurino, C. Minero, E. Pelizzetti, J. Nanosci. Nanotechnol. 15, 5 (2015)Google Scholar
  28. 28.
    Q. Qiao, K. Yang, L.-L. Ma, W.-Q. Huang, B.-X. Zhou, A. Pan, W. Hu, X. Fan, G.-F. Huang, J. Phys. D Appl. Phys. 51, 27 (2018)Google Scholar
  29. 29.
    Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Appl. Catal. B Environ. 202, 611 (2017)Google Scholar
  30. 30.
    M. Fu, J. Liao, F. Dong, H. Li, H. Liu, J. Nanomater. 2014, 8 (2014)Google Scholar
  31. 31.
    M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Colloids Surf. B Biointerfaces 157, 456 (2017)PubMedGoogle Scholar
  32. 32.
    P. Fernandez-Ibanez, J. Blanco, S. Malato, F. De Las Nieves, Water Res. 37, 13 (2003)Google Scholar
  33. 33.
    M. Konishi, T. Isobe, M. Senna, J. Lumin. 93, 1 (2001)Google Scholar
  34. 34.
    Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Sci. Rep. 3, 1943 (2013)PubMedPubMedCentralGoogle Scholar
  35. 35.
    F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Appl. Surf. Sci. 311, 574 (2014)Google Scholar
  36. 36.
    K.M. Yu, M.L. Cohen, E. Haller, W. Hansen, A.Y. Liu, I. Wu, Phys. Rev. B 49, 7 (1994)Google Scholar
  37. 37.
    J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 17, 5 (2015)Google Scholar
  38. 38.
    D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 19 (2003)Google Scholar
  39. 39.
    L. Gu, J. Wang, Z. Zou, X. Han, J. Hazard. Mater. 268, 216 (2014)PubMedGoogle Scholar
  40. 40.
    J. Li, Y. Liu, H. Li, C. Chen, J. Photochem. Photobiol. A Chem. 317, 151 (2016)Google Scholar
  41. 41.
    X. Wu, C. Liu, X. Li, X. Zhang, C. Wang, Y. Liu, Mater. Sci. Semicond. Process. 32, 27 (2015)Google Scholar
  42. 42.
    C. Wang, W. Zhu, Y. Xu, H. Xu, M. Zhang, Y. Chao, S. Yin, H. Li, J. Wang, Ceram. Int. 40, 8 (2014)Google Scholar
  43. 43.
    T. Wen, J. Gao, J. Shen, Z. Zhou, J. Mater. Sci. 36, 24 (2001)Google Scholar
  44. 44.
    Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces 6, 16 (2014)Google Scholar
  45. 45.
    P. Gabbott, Principles and Applications of Thermal Analysis (Wiley, Hoboken, 2008)Google Scholar
  46. 46.
    P.J. Haines, Thermal Methods of Analysis: Principles, Applications and Problems (Springer, Berlin, 2012)Google Scholar
  47. 47.
    S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules 42, 14 (2009)Google Scholar
  48. 48.
    W.F. Schmidt, C.L. Broadhurst, J. Qin, H. Lee, J.K. Nguyen, K. Chao, C.J. Hapeman, D.R. Shelton, M.S. Kim, Appl. Spectrosc. 69, 3 (2015)Google Scholar
  49. 49.
    W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, H. Fu, Adv. Funct. Mater. 21, 10 (2011)Google Scholar
  50. 50.
    S. Yan, Z. Li, Z. Zou, Langmuir 26, 6 (2010)Google Scholar
  51. 51.
    X.-X. Zhang, X.-M. Tao, K.-L. Yick, X.-C. Wang, Colloid Polym. Sci. 282, 4 (2004)Google Scholar
  52. 52.
    S. Yan, Z. Li, Z. Zou, Langmuir 25, 17 (2009)Google Scholar
  53. 53.
    F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.-K. Ho, ACS Appl. Mater. Interfaces 5, 21 (2013)Google Scholar
  54. 54.
    Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115, 15 (2011)Google Scholar
  55. 55.
    K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B Environ. 142, 718 (2013)Google Scholar
  56. 56.
    J. Ma, C. Wang, H. He, Appl. Catal. B Environ. 184, 28 (2016)Google Scholar
  57. 57.
    M. Muñoz-Batista, A. Kubacka, M. Fernandez-Garcia, Catal. Sci. Technol. 4, 7 (2014)Google Scholar
  58. 58.
    X. Li, Y. Zhao, Water Sci. Technol. 39, 10 (1999)Google Scholar
  59. 59.
    X. Weimin, S.-U. Geissen, Water Res. 35, 5 (2001)Google Scholar
  60. 60.
    R.J. Watts, S. Kong, W. Lee, J. Environ. Eng. 121, 10 (1995)Google Scholar
  61. 61.
    M. Lapertot, P. Pichat, S. Parra, C. Guillard, C. Pulgarin, J. Environ. Sci. Health Part A 41, 6 (2006)Google Scholar
  62. 62.
    A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. 22, 6 (1993)Google Scholar
  63. 63.
    H. Hidaka, H. Kubota, M. Graätzel, E. Pelizzetti, N. Serpone, J. Photochem. 35, 2 (1986)Google Scholar
  64. 64.
    R. Fagan, D.E. McCormack, S.J. Hinder, S.C. Pillai, Materials 9, 4 (2016)Google Scholar
  65. 65.
    M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki, N. Hioka, J. Hazard. Mater. 162, 1 (2009)Google Scholar
  66. 66.
    J.C. Colmenares, R. Luque, Chem. Soc. Rev. 43, 3 (2014)Google Scholar
  67. 67.
    J.-M. Herrmann, Catal. Today 53, 1 (1999)Google Scholar
  68. 68.
    D. Zhou, Z. Chen, Q. Yang, X. Dong, J. Zhang, L. Qin, Sol. Energy Mater. Sol. Cells 157, 3970 (2016)Google Scholar
  69. 69.
    Y. Yuan, G.-F. Huang, W.-Y. Hu, D.-N. Xiong, B.-X. Zhou, S. Chang, W.-Q. Huang, J. Phys. Chem. Solids 106, 1 (2017)Google Scholar
  70. 70.
    W. Zhang, M. Zhang, Z. Yin, Q. Chen, Appl. Phys. B Lasers Opt. 70, 2 (2000)Google Scholar
  71. 71.
    G. Cheng, M.S. Akhtar, O.-B. Yang, F.J. Stadler, ACS Appl. Mater. Interfaces 5, 14 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Md. Rashidul Islam
    • 1
    • 2
    Email author
  • Ashok Kumar Chakraborty
    • 2
  • M. A. Gafur
    • 3
  • Md. Aminur Rahman
    • 4
  • Md. Hamidur Rahman
    • 2
  1. 1.Global Centre for Environmental Remediation (GCER)The University of NewcastleCallaghanAustralia
  2. 2.Applied Chemistry and Chemical EngineeringIslamic UniversityKushtiaBangladesh
  3. 3.Pilot Plant and Process Development Center (PP and PDC)BCSIRDhakaBangladesh
  4. 4.Department of Public Heath Engineering (DPHE)Zonal LaboratoryKhulnaBangladesh

Personalised recommendations