Advertisement

Different binders in FCC catalyst preparation: impact on catalytic performance in VGO cracking

  • Sara TarighiEmail author
  • Nafise Modanlou Juibari
  • Mohammadreza Binaeizadeh
Article
  • 20 Downloads

Abstract

In the present study, four different binders including two synthesized alumina-silica sol and two commercially available binders comprising LUDOX AS-30 colloidal silica and LUDOX AS-40 colloidal silica have been applied for preparation of FCC catalyst. Other catalyst components were included such as USY zeolite, kaolin, alumina, ZSM-5 zeolite and cerium nitrate. Four catalysts have been synthesized through spray drying of aqueous slurries of the components. The influence of different binders on the cracking performance and product distribution of FCC catalysts as well as their morphology has been investigated. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray powder diffraction, ammonia temperature-programmed desorption, inductive coupled plasma, Brunauer–Emmett–Teller and Barrett–Joyner–Halenda analysis have been operated to characterize the prepared catalysts. The reasonable spherical shaped particles of 40–50 μm size were obtained applying the synthesized alumina-silica sol and LUDOX-AS-40 colloidal silica as binder. The cracking activity of the prepared FCC catalysts was investigated in catalytic cracking of vacuum gas oil in a microactivity test unit and compared with the commercially available FCC catalyst. The results indicated that the synthesized catalysts have excellent activity with respect to the commercial one in terms of maximizing gasoline yields along with less alkanes production. The reusability of the catalysts was examined in four repeated cycles.

Keywords

FCC catalyst Binder Alumina-silica sol Catalytic cracking Gasoline 

Notes

Acknowledgements

The authors thank the financial support from Iran Polymer and Petrochemical Institute (Grant No. 53791108).

Supplementary material

11164_2018_3700_MOESM1_ESM.pdf (509 kb)
Supplementary material 1 (PDF 508 kb)

References

  1. 1.
    J. Biswas, I. Maxwell, Appl. Catal. 63, 197 (1990)CrossRefGoogle Scholar
  2. 2.
    G. de la Puente, E.F. Sousa-Aguiar, A.F. Costa, U. Sedran, Appl. Catal. A Gen. 242, 381 (2003)CrossRefGoogle Scholar
  3. 3.
    R. Feng, X. Yan, X. Hu, K. Qiao, Z. Yan, M.J. Rood, Microporous Mesoporous Mater. 243, 319 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Fals, J.R. García, M. Falco, U. Sedran, Fuel 225, 26 (2018)CrossRefGoogle Scholar
  5. 5.
    A.A. Ebrahimi, H. Mousavi, H. Bayesteh, J. Towfighi, Fuel 231, 118 (2018)CrossRefGoogle Scholar
  6. 6.
    B. Jermy, M. Siddiqui, A. Aitani, M. Saeed, S. Al-Khattaf, J. Porous Mater. 19, 499 (2012)CrossRefGoogle Scholar
  7. 7.
    W. Chen, D. Han, X. Sun, C. Li, Fuel 106, 498 (2013)CrossRefGoogle Scholar
  8. 8.
    M.B. Siddiqui, A. Aitani, M. Saeed, N. Al-Yassir, S. Al-Khattaf, Fuel 90, 459 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Blasco, A. Corma, J. Martínez-Triguero, J. Catal. 237, 267 (2006)CrossRefGoogle Scholar
  10. 10.
    G. Zhao, J. Teng, Z. Xie, W. Jin, W. Yang, Q. Chen, Y. Tang, J. Catal. 248, 29 (2007)CrossRefGoogle Scholar
  11. 11.
    Z. Song, A. Takahashi, I. Nakamura, T. Fujitani, Appl. Catal. A Gen. 384, 201 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, J. Liu, G. Xiong, H. Guo, Chin. J. Catal. 38, 138 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Sun, P. Peng, Y. Wang, C. Li, F. Subhan, P. Bai, W. Xing, Z. Zhang, Z. Liu, Z. Yan, J. Porous Mater. 24, 1513 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Rostamizadeh, F. Yaripour, H. Hazrati, J. Porous Mater. 5, 59 (2017)Google Scholar
  15. 15.
    H.F. Rase, Handbook of Commercial Catalysts: Heterogeneous Catalysts (CRC Press, Boca Raton, 2016)Google Scholar
  16. 16.
    K. Honda, X. Chen, Z.-G. Zhang, Appl. Catal. A Gen. 351, 122 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Liu, Y. Zhou, Y. Zhang, L. Bai, M. Tang, Ind. Eng. Chem. Res. 47, 8142 (2008)CrossRefGoogle Scholar
  18. 18.
    A. de Lucas, J.L. Valverde, P. Sánchez, F. Dorado, M.J. Ramos, Appl. Catal. A Gen. 282, 15 (2005)CrossRefGoogle Scholar
  19. 19.
    F. Dorado, R. Romero, P. Cañizares, Appl. Catal. A Gen. 236, 235 (2002)CrossRefGoogle Scholar
  20. 20.
    A. De Lucas, P. Sánchez, A. Fúnez, M. Ramos, J. Valverde, J. Mol. Catal. A Chem. 259, 259 (2006)CrossRefGoogle Scholar
  21. 21.
    F. Dorado, R. Romero, P. Cañizares, Ind. Eng. Chem. Res. 40, 3428 (2001)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, Y. Zhou, A. Qiu, Y. Wang, Y. Xu, P. Wu, Ind. Eng. Chem. Res. 45, 2213 (2006)CrossRefGoogle Scholar
  23. 23.
    D.S. Shihabi, W.E. Garwood, P. Chu, J.N. Miale, R.M. Lago, C.T. Chu, C.D. Chang, J. Catal. 93, 471 (1985)CrossRefGoogle Scholar
  24. 24.
    A. Corma, F. Melo, L. Sauvanaud, F. Ortega, Catal. Today 107, 699 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Degnan, G. Chitnis, P. Schipper, Microporous Mesoporous Mater. 35, 245 (2000)CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, C. Li, S. Xu, H. Shan, C. Yang, J. Porous Mater. 20, 171 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Farshi, F. Shaiyegh, S. Burogerdi, A. Dehgan, Pet. Sci. Technol. 29, 875 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Yan, R. Le Van Mao, Appl. Catal. A Gen. 375, 63 (2010)CrossRefGoogle Scholar
  29. 29.
    A. Farshi, H. Abri, Pet. Sci. Technol. 30, 1285 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Schallmoser, T. Ikuno, M. Wagenhofer, R. Kolvenbach, G. Haller, M. Sanchez-Sanchez, J. Lercher, J. Catal. 316, 93 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Holtzclaw Jr., Inorganic Synthesis, vol. 8 (McGraw-Hill, New York, 1966)CrossRefGoogle Scholar
  32. 32.
    T.G. Roberie, F.T.I. John, U.S. Patent No. 5,194,412 (U.S. Patent and Trademark Office, Washington, DC, 1993)Google Scholar
  33. 33.
    T. Itoh, U.S. Patent No. 6,214,211 (U.S. Patent and Trademark Office, Washington, DC, 2001)Google Scholar
  34. 34.
    D. Stamires, P. O’connor, E.J. Laheij, C. Vadovic, U.S. Patent No. 9,381,502 (U.S. Patent and Trademark Office, Washington, DC, 2016)Google Scholar
  35. 35.
    J. García-Martínez, K. Li, G. Krishnaiah, Chem. Commun. 48, 11841 (2012)CrossRefGoogle Scholar
  36. 36.
    A. Bazyari, A. Khodadadi, N. Hosseinpour, Y. Mortazavi, Fuel Process. Technol. 90, 1226 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Kuehne, H. Kung, J. Miller, J. Catal. 171, 293 (1997)CrossRefGoogle Scholar
  38. 38.
    A. Ebrahimi, S. Tarighi, A. Ani, Kinet. Catal. 57, 610 (2016)CrossRefGoogle Scholar
  39. 39.
    J.W. Ward, J. Phys. Chem. 72, 4211 (1968)CrossRefGoogle Scholar
  40. 40.
    L. Monakhova, M. Filippov, Y.I. Tarasevich, B. Shteinman, J. Appl. Spectrosc. 37, 799 (1982)CrossRefGoogle Scholar
  41. 41.
    H. Liu, H. Zhao, X. Gao, J. Ma, Catal. Today 125, 163 (2007)CrossRefGoogle Scholar
  42. 42.
    A.E. Rodrigues, M.D. LeVan, D. Tondeur, Adsorption: Science and Technology (Springer, Berlin, 2012)Google Scholar
  43. 43.
    J. García-Martínez, M. Johnson, J. Valla, K. Li, J.Y. Ying, Catal. Sci. Technol. 2, 987 (2012)CrossRefGoogle Scholar
  44. 44.
    D. Karthikeyan, R. Atchudan, R. Sivakumar, Chin. J. Catal. 37, 1907 (2016)CrossRefGoogle Scholar
  45. 45.
    F. Lónyi, J. Valyon, Microporous Mesoporous Mater. 47, 293 (2001)CrossRefGoogle Scholar
  46. 46.
    Y. Hiramatsu, Y. Aita, T. Umeki, J. Jpn. Pet. Inst. 55, 319 (2012)CrossRefGoogle Scholar
  47. 47.
    L. He, S. Zheng, S. Ren, H.X. Yu, J.C. Zhang, Pet. Chem. 57, 60 (2017)CrossRefGoogle Scholar
  48. 48.
    U. Etim, B. Xu, Z. Zhang, Z. Zhong, P. Bai, K. Qiao, Z. Yan, Fuel 178, 243 (2016)CrossRefGoogle Scholar
  49. 49.
    N. Su, H.-Y. Fang, Z.-H. Chen, F.-S. Liu, Cem. Concr. Res. 30, 1773 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIslamic Republic of Iran
  2. 2.School of Chemistry, College of ScienceUniversity of TehranTehranIslamic Republic of Iran

Personalised recommendations