Introduction of graphene-periodic mesoporous silica as a new sorbent for removal: experiment and simulation

  • Hadi TabaniEmail author
  • Kamal Khodaei
  • Ali Zeraatkar Moghaddam
  • Michal Alexovič
  • Siyavash Kazemi Movahed
  • Farzaneh Dorabadi Zare
  • Minoo Dabiri


For the first time, a novel sandwich structure of graphene-periodic mesoporous silica (G-PMS) sorbent was introduced for the removal of acid blue (as a model analyte) from wastewater samples. Moreover, this procedure was investigated through static and column modes. The effect of different key factors affecting the adsorption of the target compound was studied in batch-based (static) conditions and optimized via response surface methodology using a Box–Behnken design. Parameters involved included the amount of sorbent, time for reaching adsorption equilibrium, and initial concentration of dye. Under the optimized conditions (amount of sorbent: 10 mg; acid blue concentration 60 ng mL−1; stirring rate of sample solution: 1400 rpm; contact time: 6 min), an acceptable adsorption capacity was obtained (21 mg g−1), and the adsorption isotherm was fitted with the Freudlich model. Moreover, G-PMS showed higher removal efficiency (R = 89.5%) compared to graphene (R = 62%). Furthermore, a flow-based (column) mode was also performed to study analyte removal using a fixed-bed column. Numerical simulation, using COMSOL Multiphysics, was applied to predict the breakthrough curves. An objective framework was suggested by this model to interpret the efficiency of the developed adsorption system. Eventually, the obtained results of this model can help to predict the possibility for designing and scaling-up the adsorption process.

Graphical abstract


Acid blue removal COMSOL modeling Column study Sandwich-type nanocomposite Wastewater treatment 

List of symbols


Initial acid blue concentration in sample solution (mg L−1)


Equilibrium acid blue concentration in sample solution (mg L−1)


Hydrodynamic dispersion of the liquid through the sorbent in column (m2 s−1)


Freundlich constant related to adsorption capacity (mg g−1)


Langmuir constant (L mg−1)


Adsorbent amount (g)


Freundlich constant (dimensionless)


Amount of acid blue uptake per unit mass of absorbent at equilibrium (mg g−1)


Adsorbent monolayer capacity (mg g−1)


Volume of solution (L)


Linear velocity of water through fixed-bed column (m s−1)


Porosity of the sorbent material in column (dimensionless)


Density of the sorbent (kg m−3)



Financial support from the Research Institute of Applied Sciences (ACECR), Shahid Beheshti University is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declared no conflict of interest.


  1. 1.
    V.K. Garg, M. Amita, R. Kumar, R. Gupta, Dyes Pigm. 63, 3 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Panizza, G. Cerisola, J. Hazard. Mater. 153, 1 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Bache, M. Hossain, S. Al-Ani, P. Jackson, Water Supply 9, 1 (1991)Google Scholar
  4. 4.
    M. Muthukumar, D. Sargunamani, N. Selvakumar, J.V. Rao, Dyes Pigm. 63, 2 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Meriç, D. Kaptan, T. Ölmez, Chemosphere 54, 3 (2004)CrossRefGoogle Scholar
  6. 6.
    A. Aleboyeh, Y. Moussa, H. Aleboyeh, Sep. Purif. Technol. 43, 2 (2005)CrossRefGoogle Scholar
  7. 7.
    U. Bali, E. Çatalkaya, F. Şengül, J. Hazard. Mater. 114, 1 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Özcan, E.M. Öncü, A.S. Özcan, Colloids Surf. A 277, 1 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Mittal, L. Krishnan, V. Gupta, Sep. Purif. Technol. 43, 2 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Sadeghi, A.Z. Moghaddam, M. Massinaei, RSC Adv. 5, 55731 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Cheng, Q. Feng, X. Ren, M. Yin, Y. Zhou, Z. Xue, Colloids Surf. A 485, 125 (2015)CrossRefGoogle Scholar
  12. 12.
    T. Shamspur, A. Mostafavi, J. Hazard. Mater. 168, 2 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Zhu, W. Niu, H. Li, S. Han, G. Xu, Talanta 79, 5 (2009)Google Scholar
  14. 14.
    E. Kılınç, Anal. Methods 7, 24 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Tabani, K. Khodaei, Y. Bide, F.D. Zare, S. Mirzaei, A.R. Fakhari, J. Chromatogr. A 1407, 21 (2015)CrossRefGoogle Scholar
  16. 16.
    J.M. Jiménez-Soto, S. Cárdenas, M. Valcárcel, J. Chromatogr. A 1216, 30 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Tabani, A.R. Fakhari, A. Shahsavani, M. Behbahani, M. Salarian, A. Bagheri, S. Nojavan, J. Chromatogr. A 1300, 227 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, W.P. Low, H.K. Lee, J. Chromatogr. A 1233, 16 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Zhang, H.K. Lee, Anal. Chim. Acta 742, 67 (2012)CrossRefGoogle Scholar
  20. 20.
    M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 10 (2008)CrossRefGoogle Scholar
  21. 21.
    Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan, X. Wang, J. Mater. Chem. 22, 8 (2012)Google Scholar
  22. 22.
    S.K. Movahed, M. Shariatipour, M. Dabiri, RSC Adv. 5, 42 (2015)CrossRefGoogle Scholar
  23. 23.
    A.R. Fakhari, H. Tabani, S. Nojavan, H. Abedi, Electrophoresis 33, 3 (2012)CrossRefGoogle Scholar
  24. 24.
    V. Gerlich, K. Sulovská, M. Zálešák, Measurement 46, 6 (2013)CrossRefGoogle Scholar
  25. 25.
    E.M. Dede, in Proceedings of the COMSOL Users Conference (2009)Google Scholar
  26. 26.
    A. Jorio, M. Dresselhaus, R. Saito, G. Dresselhaus (VCH, Weinheim, 2011)Google Scholar
  27. 27.
    X. Fu, F. Bei, X. Wang, S. O’Brien, J.R. Lombardi, Nanoscale 2, 8 (2010)CrossRefGoogle Scholar
  28. 28.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 20 (2000)CrossRefGoogle Scholar
  29. 29.
    Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 135, 12 (2013)Google Scholar
  30. 30.
    B. Yu, X. Jiang, J. Yin, Nanoscale 5, 12 (2013)Google Scholar
  31. 31.
    J.S. Noh, J.A. Schwarz, J. Colloid Interface Sci. 130, 157 (1989)CrossRefGoogle Scholar
  32. 32.
    M. Ghaedi, A. Hassanzadeh, S.N. Kokhdan, J. Chem. Eng. Data 56, 5 (2011)Google Scholar
  33. 33.
    T.K. Sen, S. Afroze, H. Ang, Water Air Soil Pollut. 218, 1 (2011)CrossRefGoogle Scholar
  34. 34.
    F.P.Y. Sisnandy, Y.H. Ju, F.E. Soetaredjo, S. Ismadji, Adsorpt. Sci. Technol. 28, 847 (2010)CrossRefGoogle Scholar
  35. 35.
    M.R. Fathi, A. Asfaram, A. Hadipour, M. Roosta, J. Environ. Health. Sci. Eng. 12, 62 (2014)CrossRefGoogle Scholar
  36. 36.
    S.N. Jain, P.R. Gogate, Desalin. Water Treat. 85, 215 (2017)CrossRefGoogle Scholar
  37. 37.
    N. Hoda, E. Bayram, E. Ayranci, J. Hazard. Mater. 137, 344 (2006)CrossRefGoogle Scholar
  38. 38.
    Y.S. Reddy, C.M. Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, J. Phys. Chem. Solids 123, 43 (2018)CrossRefGoogle Scholar
  39. 39.
    K.A. Hernández-Hernández, M. Solache-Ríos, M.C. Díaz-Nava, Water Air Soil Pollut. 224, 1562 (2013)CrossRefGoogle Scholar
  40. 40.
    M.T. Hernandez-Eudave, A. Bonilla-Petriciolet, M.R. Moreno-Virgen, C.K. Rojas-Mayorga, R. Tovar-Gomez, Desalin. Water Treat. 57, 1 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Ghanei, A. Rashidi, H.A. Tayebi, M.E. Yazdanshenas, J. Chem. Eng. Data 63, 3592 (2018)CrossRefGoogle Scholar
  42. 42.
    A. Goshadrou, A. Moheb, Desalination 269, 170 (2011)CrossRefGoogle Scholar
  43. 43.
    T.A. Khan, M. Nazir, Environ. Prog. Sustain. Energy 34, 1443 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Hadi Tabani
    • 1
    Email author
  • Kamal Khodaei
    • 1
  • Ali Zeraatkar Moghaddam
    • 2
  • Michal Alexovič
    • 3
  • Siyavash Kazemi Movahed
    • 4
  • Farzaneh Dorabadi Zare
    • 4
  • Minoo Dabiri
    • 4
  1. 1.Department of Environmental Geology, Research Institute of Applied Sciences (ACECR)Shahid Beheshti UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of BirjandBirjandIran
  3. 3.Department of Medical and Clinical Biophysics, Faculty of MedicineUniversity of P. J. Šafárik in KošiceKosiceSlovakia
  4. 4.Department of Pure Chemistry, Faculty of ChemistryShahid Beheshti University, G. C.Evin, TehranIran

Personalised recommendations