Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 4, pp 1721–1735 | Cite as

Chitosan–silica nanoparticles catalyst (M@CS–SiO2) for the degradation of 1,1-dimethylhydrazine

  • Junru Wang
  • Yucheng Zhou
  • Yamin Shao
  • Feng He
  • Min WuEmail author
  • Henmei NiEmail author
  • Yingping Zheng
  • Yueming Sun
Article
  • 20 Downloads

Abstract

Hybrid materials of chitosan–silica (CS–SiO2) with nonprecious-metallic ions (Cu) immobilized on (Cu–M@CS–SiO2) were developed as green catalysts for degrading 1,1-dimethyl hydrazine (UDMH) wastewater. SEM, XRD, EDX, and FT-IR were employed for characterizing the catalysts. Results indicated that metal ions were chelated with N or N and O atoms of CS–SiO2. The efficiency of UDMH degradation, chemical oxygen demand (COD) removal and the concentration of N-nitrosodimethylamine (NDMA) were used to evaluate the catalytic activity. The catalysts were firstly combined into the process of catalytic wet peroxide oxidation (CWPO) for the degradation of UDMH wastewater with H2O2. Based on the study of the effects of different metallic ions, anions and reaction factors on the catalyst activity, the optimal conditions for CWPO with M@CS–SiO2 were determined, the H2O2 dosage and temperature were 3.0 mL and 65 °C, respectively. Under these conditions, the treatable UDMH concentration was 500 mg L−1, obtaining the high efficiency of UDMH degradation and COD removal (100% in 10 min and 87.38% in 30 min, respectively) and the low concentration of NDMA (0.31 mg L−1). The catalyst activity was less affected within six reaction cycles. Meanwhile, owning a huge surface area and strong adsorption performance, this kind of hybrid material can rapidly degrade, adsorb, and separate pollution.

Keywords

Green nanocatalyst Metal complex UDMH CWPO Chitosan Silica 

Notes

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. 2242018k1G002).

References

  1. 1.
    T. Smith, R.S. Rana, P. Missiaen, K.D. Rose, A. Sahni, H. Singh, L. Singh, Naturwissensc 94, 1003 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Brinklov, E.K.V. Kalko, A. Surlykke, J. Exp. Biol. 212, 11 (2009)CrossRefGoogle Scholar
  3. 3.
    P.H.S. Jen, C.H. Wu, NeuroReport 19, 373 (2008)CrossRefGoogle Scholar
  4. 4.
    C. AnChiu, W. Xian, C.F. Moss, Proc. Natl. Acad. Sci. USA 105, 13116 (2008)CrossRefGoogle Scholar
  5. 5.
    C.F. Moss, S.R. Sinha, Curr. Opin. Neurobiol. 13, 751 (2003)CrossRefGoogle Scholar
  6. 6.
    E.C. Teeling, M.S. Springer, O. Madsen, P. Bates, S.J. O’Brien, W.J. Murphy, Science 307, 580 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Shaabani, M.B. Boroujeni, M.S. Laeini, RSC Adv. 6, 27706 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Carlsen, O.A. Kenesova, S.E. Batyrbekova, Chemosphere 67, 1108 (2007)CrossRefGoogle Scholar
  9. 9.
    D.J. Neubaum, K.R. Wilson, T.J. O’shea, J. Wildl. Manag. 71, 728 (2007)CrossRefGoogle Scholar
  10. 10.
    C.M. DeLong, R. Bragg, J.A. Simmons, J. Acoust. Soc. Am. 123, 4582 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Kingston, Biodivers. Conserv. 19, 471 (2010)CrossRefGoogle Scholar
  12. 12.
    C. Chiu, C.F. Moss, J. Acoust. Soc. Am. 121, 2227 (2007)CrossRefGoogle Scholar
  13. 13.
    G. Lunn, E.B. Sansone, Chemosphere 29, 1577 (1994)CrossRefGoogle Scholar
  14. 14.
    T.L. Varghese, S.C. Gaindhar, J. David, Def. Sci. J. 45, 25 (1995)CrossRefGoogle Scholar
  15. 15.
    Z.A. Zorina, T.A. Obozova, Zool. Zhurnal 90, 784 (2011)Google Scholar
  16. 16.
    O.N. Fraser, T. Bugnyar, PLoS ONE 6, e18118 (2011)CrossRefGoogle Scholar
  17. 17.
    I.M. Pepperberg, J. Comp. Psychol. 120, 1 (2006)CrossRefGoogle Scholar
  18. 18.
    E.A. Burns, E.A. Lawler, Anal. Chem. 35, 802 (1963)CrossRefGoogle Scholar
  19. 19.
    N. J. Emery, Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 23 (2006)Google Scholar
  20. 20.
    M.S. Funk, Anim. Cogn. 5, 167 (2002)CrossRefGoogle Scholar
  21. 21.
    K.A. Bhaskaran, M.C. Gupta, T. Just, Combust. Flame 21, 45 (1973)CrossRefGoogle Scholar
  22. 22.
    I.M. Pepperberg, A. Schachner, T.F. Brady, Curr. Biol. 19, 831 (2009)CrossRefGoogle Scholar
  23. 23.
    I.M. Pepperberg, J. Vicinay, P. Cavanagh, Perception 37, 765 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Seftel, J. Urol. 186, 971 (2011)CrossRefGoogle Scholar
  25. 25.
    S.J. Shettleworth, Can. J. Exp. Psychol. 66, 217 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Schloegl, J. Schmidt, M. Boeckle, B.M. Weiss, K. Kotrschal, Proc. R. Soc. Lond. B Biol. Sci. 279, 4135 (2012)CrossRefGoogle Scholar
  27. 27.
    A.H. Taylor, R. Miller, R.D. Gray, Proc. Natl. Acad. Sci. USA 109, 16389 (2012)CrossRefGoogle Scholar
  28. 28.
    M.L. Liang, W.J. Li, Q. Qi, P.C. Zeng, Y.C. Zhou, Y.P. Zheng, M. Wu, H.M. Ni, RSC Adv. 6, 5677 (2016)CrossRefGoogle Scholar
  29. 29.
    D.D. Yifru, V.A. Nzengung, Environ. Sci. Technol. 40, 7374 (2006)CrossRefGoogle Scholar
  30. 30.
    M.T. Angaji, R. Ghiaee, Ultrason. Sonochem. 23, 257 (2015)CrossRefGoogle Scholar
  31. 31.
    K. Huang, Y. Xu, L.G. Wang, D.F. Wu, RSC Adv. 5, 32795 (2015)CrossRefGoogle Scholar
  32. 32.
    K. Goto, S. Watanabe, Anim. Cogn. 15, 27 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Nawrocki, P. Andrzejewski, J. Hazard. Mater. 189, 1 (2011)CrossRefGoogle Scholar
  34. 34.
    N.V. Kramareva, A.Y. Stakheev, O.P. Tkachenko, K.V. Klementiev, W. Grunert, E.D. Finashina, L.M. Kustov, J. Mol. Catal. A Chem. 209, 97 (2004)CrossRefGoogle Scholar
  35. 35.
    J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W. Arguelles-Monal, J. Desbrieres, M. Rinaudo, Polymer 42, 3569 (2001)CrossRefGoogle Scholar
  36. 36.
    C.M. Ding, W.J. Yue, Y. Su, G.Y. Li, L. Guo, L. Chen, Spectrosc. Spectr. Anal. 27, 1185 (2007)Google Scholar
  37. 37.
    H.B. Li, Y.M. Du, X.J. Wu, H.Y. Zhan, Colloids Surf. A 242, 1 (2004)CrossRefGoogle Scholar
  38. 38.
    L. Lv, Y.H. Xie, G.M. Liu, G. Liu, J. Yu, J. Environ. Sci. 26, 792 (2014)CrossRefGoogle Scholar
  39. 39.
    X.L. Tong, Z.D. Wu, X. Luo, Y.T. Yan, Y.H. Wang, Res. Astron. Astrophys. 15, 1095 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Vincent, P. Krys, C. Jouannin, A.C. Gaumont, I. Dez, E. Guibal, J. Organomet. Chem. 723, 90 (2013)CrossRefGoogle Scholar
  41. 41.
    J.J. Wu, N. Zhao, X.L. Zhang, J. Xu, Cellulose 19, 1239 (2012)CrossRefGoogle Scholar
  42. 42.
    P. Zhang, P. Liu, X.Y. Wang, L.M. Li, Prog. Chem. 18, 556 (2006)Google Scholar
  43. 43.
    O.A. Makhotkina, E.V. Kuznetsova, S.V. Preis, Appl. Catal. B Envioron. 68, 85 (2006)CrossRefGoogle Scholar
  44. 44.
    M.T. Angaji, R. Ghiaee, J. Taiwan Inst. Chem. Eng. 49, 142 (2015)CrossRefGoogle Scholar
  45. 45.
    C. Lee, W. Choi, Y.G. Kim, J. Yoon, Environ. Sci. Technol. 39, 2101 (2005)CrossRefGoogle Scholar
  46. 46.
    Z.R. Ismagilov, M.A. Kerzhentsev, I.Z. Ismagilov, V.A. Sazonov, V.N. Parmon, G.L. Elizarova, O.P. Pestunova, V.A. Shandakov, Y.L. Zuev, V.N. Eryomin, N.V. Pestereva, F. Garin, H.J. Veringa, Catal. Today 75, 277 (2002)CrossRefGoogle Scholar
  47. 47.
    W. Ding, M. Wu, M.L. Liang, H.M. Ni, Y. Li, Anal. Lett. 48, 1551 (2015)CrossRefGoogle Scholar
  48. 48.
    O.P. Pestunova, G.L. Elizarova, Z.R. Ismagilov, M.A. Kerzhentsev, V.N. Parmon, Catal. Today 75, 219 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations