Advertisement

Adsorption behavior of water and xylene isomers on AlPO-5 zeolite modified by different transition metals

  • Sarah Moulai
  • Rachid Ghezini
  • Abdelkrim Hasnaoui
  • Abdelkader Bengueddach
  • Peter G. Weidler
Article
  • 15 Downloads

Abstract

This work deals with the preparation of MAPO-5 zeolite by a hydrothermal method. In order to study the adsorption properties of this zeolite several transition metals (Fe, Co, Ni, Mn and Zn) were incorporated by a direct route. The obtained zeolites were characterized by various physico-chemical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, adsorption/desorption of argon, thermogravimetric analysis/differential thermal analysis, scanning electronic microscopy (FEG-ESEM) and Inductively coupled plasma–optical Emission spectrometry (ICP-OES). The prepared zeolites were tested for adsorption of water and xylene isomers (ortho-, para- and meta-xylene). The obtained results showed that the isomorphic substitution of the transition metals in the framework of the zeolite has been achieved with different levels of metals. The isomorphic substitution by zinc showed the best results in terms of the percentage of the incorporated metal, while the substitution by cobalt presented the lowest rate of incorporation in the framework of the zeolite CoAPO-5. The adsorption of water in the vapor state on the zeolite substituted by Ni, Fe and Zn has presented the best adsorption capacity. The adsorption of xylene isomers on MAPO-5 showed different isotherms, confirming that the adsorption behavior differs from one zeolite to another. ZnAPO-5 showed higher adsorption capacity for all xylene isomers with slight selectivity towards meta-xylene.

Keywords

AlPO-5 MAPO-5 Isomorphic substitution Water adsorption Xylene adsorption 

References

  1. 1.
    M. Polisi, R. Arletti, S. Quartieri, L. Pastero, C. Giacobbe, G. Vezzalini, Microporous Mesoporous Mater. 261, 137 (2018)CrossRefGoogle Scholar
  2. 2.
    T. Gibbs, C.L.I.M. White, A.R. Ruiz-Salvador, D.W. Lewis, Stud. Surf. Sci. Catal. 154, 1737 (2004)CrossRefGoogle Scholar
  3. 3.
    N. Djeffal, M. Benbouzid, B. Boukoussa, H. Sekkiou, A. Bengueddach, Mater. Res. Express. 4, 035504 (2017)CrossRefGoogle Scholar
  4. 4.
    I. Terrab, B. Boukoussa, R. Hamacha, N. Bouchiba, R. Roy, A. Bengueddach, A. Azzouz, Thermochim. Acta 624, 95 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang, Sep. Purif. Technol. 180, 1 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Grand, S.N. Talapaneni, A. Vicente, C. Fernandez, E. Dib, H.A. Aleksandrov, G.N. Vayssilov, R. Retoux, P. Boullay, J.P. Gilson, V. Valtchev, S. Mintova, Nat. Mater. 16, 1010 (2017)CrossRefGoogle Scholar
  7. 7.
    S.N. Talapaneni, J. Grand, S. Thomas, H.A. Ahmad, S. Mintova, Mater. Des. 99, 574 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Hakiki, B. Boukoussa, Z. Kibou, I. Terrab, K. Ghomari, N. Choukchou-Braham, R. Hamacha, A. Bengueddach, A. Azzouz, Thermochim. Acta 662, 108 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Kessouri, B. Boukoussa, A. Bengueddach, R. Hamacha, Res. Chem. Intermed. 44, 2475 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Bellatreche, A. Hasnaoui, B. Boukoussa, J. Garcia-Aguilar, A. Berenguer-Murcia, D. Cazorla-Amoros, A. Bengueddach, Res. Chem. Intermed. 42, 8039 (2016)CrossRefGoogle Scholar
  11. 11.
    S.-T. Wilson, B.-M. Lok, C.-A. Messina, T.-R. Cannan, E.-M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982)CrossRefGoogle Scholar
  12. 12.
    J. Kornatowski, G. Zadrozna, J. Wloch, M. Rozwadowski, Langmuir 15, 5863 (1999)CrossRefGoogle Scholar
  13. 13.
    C. Baerlocher, W.-M. Meier, D.-H. Olson, Atlas of Zeolite framework types. Elsevier, Amsterdam (2001)Google Scholar
  14. 14.
    S.-B. Waghmode, Y. Saha, Y. Kubota, Catal J. 228, 192 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Hartmann, L. Kevan, Chem. Rev. 99, 635 (1999)CrossRefGoogle Scholar
  16. 16.
    B.M. Weckhuysen, R.R. Ramachandra, J.A. Martens, R.A. Schoonheydt, Eur. J. Inorg. Chem. 1999, 565 (1999)CrossRefGoogle Scholar
  17. 17.
    E.-M. Flanigen, B.-M. Lok, R.-L. Patton, S.-T. Wilson, Stud. Surf. Sci. Catal. 28, 103 (1986)CrossRefGoogle Scholar
  18. 18.
    M. Shafiei, M.-S. Alivand, A. Ali, A. Rashidi, D. Samimi, D. Mohebbi-Kalhori, Chem. Eng. J. 341, 164 (2018)CrossRefGoogle Scholar
  19. 19.
    X. Zhang, B. Gao, A. Elise Creamer, C. Cao, Y. Li, J. Hazard. Mater. 338, 102 (2017)CrossRefGoogle Scholar
  20. 20.
    K. Machowski, P. Kuśtrowski, B. Dudek, M. Michalik, Mater. Chem. Phys. 165, 253 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Kraus, U. Trommler, F. Holzer, F.-D. Kopinke, U. Roland, Chem. Eng. J. 351, 356 (2018)CrossRefGoogle Scholar
  22. 22.
    M.G. Uytterhoeven, R.A. Schoonheydt, Microporous Mater. 3, 265 (1994)CrossRefGoogle Scholar
  23. 23.
    B. Feng, J. Li, X. Zhu, Q. Guo, W. Zhang, G. Wen, Z. Zhang, L. Gu, Z. Yang, Q. Zhang, B. Shen, Catal. Today 263, 91 (2016)CrossRefGoogle Scholar
  24. 24.
    A.X.S. Bruker, TOPAS V6: Genereal Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual (Bruker AXS, Karlsruhe, 2017)Google Scholar
  25. 25.
    S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer, Berlin, p. 347 (2006)Google Scholar
  26. 26.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
  27. 27.
    L. Zhou, J. Xu, C. Chen, F. Wang, X. Li, J. Porous Mater. 15, 7 (2008)CrossRefGoogle Scholar
  28. 28.
    C. Coutanceau, J.-M. Da Silva, M.-F. Alvarez, F.-R. Ribeiro, M. Guisnet, J. Chim. Phys. 94, 765 (1997)CrossRefGoogle Scholar
  29. 29.
    B.-W. Lu, H. Jon, T. Kanai, Y. Oumi, K. Itabashi, T. Sano, J. Mater. Sci. 41, 1861 (2001)CrossRefGoogle Scholar
  30. 30.
    A. Corma, L.-T. Nemeth, M. Renz, S. Valencia, Nature 412, 423 (2001)CrossRefGoogle Scholar
  31. 31.
    D. Yiyuan Khoo, H. Awala, S. Mintova, E.-P. Ng, Microporous Mesoporous Mater. 194, 200 (2014)CrossRefGoogle Scholar
  32. 32.
    E.-P. Ng, S. Mintova, Microporous Mesoporous Mater. 114, 1 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Kornatowski, C. R. Chimie. 8, 561 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Amiri, S. Sohrabnezhad, A. Rahimi, Mater. Sci. Eng. C 37, 342 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Müller, J. Bódis, J. Kornatowski, Microporous Mesoporous Mater. 69, 1 (2004)CrossRefGoogle Scholar
  36. 36.
    D.-D. Rosenfeld, D.-M.D. Barthomeuf, US Exxon Chem Pat. 4, 482 (1983)Google Scholar
  37. 37.
    A.S.T. Chiang, C.K. Lee, Z.H. Chang, Zeolites 11, 380 (1991)CrossRefGoogle Scholar
  38. 38.
    J. Liu, M. Dong, Z. Sun, Z. Qin, J. Wang, Colloids Surf. A Physicochem. Eng. Aspects. 247, 41 (2004)CrossRefGoogle Scholar
  39. 39.
    G. Lischke, B. Parlitz, U. Lohse, E. Schreier, R. Fricke, Appl. Catal. A 166, 351 (1998)CrossRefGoogle Scholar
  40. 40.
    S. Gopalakrishnan, K.R. Viswanathan, S. Vishnu Priya, J. Herbert Mabel, M. Palanichamy, V. Murugesan, Catal. Commun. 10, 23 (2008)CrossRefGoogle Scholar
  41. 41.
    V.R. Vijayaraghavan, K. Joseph Antony Raj, J. Mol, J. Mol. Catal. A Chem. 207, 41 (2004)CrossRefGoogle Scholar
  42. 42.
    R. Wendelbo, R. Roque-Malherbe, Microporous Mater. 10, 23 (1997)CrossRefGoogle Scholar
  43. 43.
    Z. Wu, Y. Yang, B. Tu, P.A. Webley, D. Zhao, Adsorption 15, 123 (2009)CrossRefGoogle Scholar
  44. 44.
    A.M. Dehkordi, M. Khademi, Microporous Mesoporous Mater. 172, 136 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Tourani, M. Baghalha, F. Khorasheh, A. Behvandi, Fluid Phase Equilib. 298, 54 (2010)CrossRefGoogle Scholar
  46. 46.
    Z.Y. Gu, D.Q. Jiang, H.F. Wang, X.Y. Cui, X.P. Yan, J. Phys. Chem. C 114, 311 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie des Matériaux L.C.MUniversité Oran1 Ahmed Ben BellaEl-Mnaouer, OranAlgeria
  2. 2.Institute of Functional InterfacesKarlsruher Institut für Technologie KITEggenstein-LeopoldshafenGermany

Personalised recommendations