Advertisement

Effect of temperature on structural and optical properties of solvothermal assisted CdS nanowires with enhanced photocatalytic degradation under natural sunlight irradiation

  • Shweta N. Jamble
  • Karuna P. Ghoderao
  • Rohidas B. KaleEmail author
Article
  • 31 Downloads

Abstract

Photocatalytic degradation of toxic dyes is an important topic across the globe. This paper reports the photocatalytic degradation of methylene blue (MB) dye using cadmium sulfide (CdS) nanowires as a photocatalyst under natural sunlight irradiation. The CdS nanowires were successfully synthesized by a solvothermal route using ethylenediamine as a solvent with a series of different reaction temperature from 160 to 200 °C for a fixed time of 24 h. Multiple characterization techniques were used to investigate the structural, morphology, optical and photocatalytic study of as-synthesized CdS samples. The XRD patterns reveal highly crystalline CdS nanomaterials with a hexagonal crystal structure. The FESEM and HRTEM observations clearly confirmed a large number of uniform nanowires grown in different directions and interconnected with each other. The stoichiometric ratio of Cd:S is almost 1:1, confirmed by EDS analysis. Room temperature PL spectra of CdS nanowires exhibit a narrow emission at a wavelength of 512 nm. The CdS nanowires synthesized at 200 °C shows the excellent photocatalytic performance with highest photodegradation efficiency has reached up to 98.75% within 20 min, under sunlight irradiation. The 93.06% and 89.10% photodegradation efficiency were observed in CdS nanowires synthesized at 180 °C and 160 °C, respectively. From these result, it is observed that the crystallite size and morphology of CdS nanowires are the influence factors for the photodegradation efficiency of MB dye. Furthermore, the mechanism of MB dye photodegradation using CdS nanowires was discussed. These CdS nanowires with high photocatalytic activity can be used for future in water pollutant degradation.

Keywords

Solvothermal synthesis Reaction temperature Hexagonal CdS MB dye degradation Sunlight irradiation 

Notes

Acknowledgements

The authors would like to acknowledge The Director of INUP, IIT Bombay for providing necessary research facilities and we are grateful to thank the Department of Science and Technology, India under the DST-FIST (SR/FST/PSI-173/2012) program.

References

  1. 1.
    S.A. Vanalakar, S.M. Patil, V.L. Patil, S.A. Vhanalkar, P.S. Patil, J.H. Kim, Mater. Sci. Eng. B 229, 135 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Kadam, R. Dhabbe, D.-S. Shin, K. Garadkar, J. Park, Ceram. Int. 43, 5164 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Kuriakose, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 16, 12741 (2014)CrossRefGoogle Scholar
  4. 4.
    O.A. Zelekew, D.-H. Kuo, RSC Adv. 8, 4353 (2017)CrossRefGoogle Scholar
  5. 5.
    K.P. Ghoderao, S.N. Jamble, R.B. Kale, Optik 156, 758 (2018)CrossRefGoogle Scholar
  6. 6.
    L.V. Trandafilovic, D.J. Jovanovic, X. Zhang, S. Ptasinska, M.D. Dramicanin, Appl. Catal. B Environ. 203, 740 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Rasalingam, C.-M. Wu, R.T. Koodali, ACS Appl. Mater. Interfaces 7, 4368 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu, Z. Wu, Chem. Eng. J. 228, 392 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, L. Duan, D. Zhang, J. Hazard. Mater. 138, 53 (2006)CrossRefGoogle Scholar
  10. 10.
    L. Jing, W. Zhou, G. Tian, H. Fu, Chem. Soc. Rev. 42, 9509 (2013)CrossRefGoogle Scholar
  11. 11.
    V. Homem, L. Santos, J. Environ. Manag. 92, 2304 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Xiao, Y. Xie, F. Nawaz, S. Jin, F. Duan, M. Li, H. Cao, Appl. Catal. B Environ. 181, 420 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Appl. Surf. Sci. 317, 414 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, J. Mater. Sci. Mater. Electron. 27, 6918 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.M. Hunge, Ceram. Int. 43, 10089 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Perween, A. Rajan, Sol. Energy Mater. Sol. Cells 163, 148 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Hazarika, N. Karak, Appl. Surf. Sci. 376, 276 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Pan, X. Liu, New J. Chem. 36, 1781 (2012)CrossRefGoogle Scholar
  19. 19.
    M.E. Khan, M.M. Khan, M.H. Cho, J. Colloid Interface Sci. 482, 221 (2016)CrossRefGoogle Scholar
  20. 20.
    J. He, L. Chen, Z.-Q. Yi, C.-T. Au, S.-F. Yin, Ind. Eng. Chem. Res. 55, 8327 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Chen, S. Cao, J. Yao, F. Jiang, J. Taiwan Inst. Chem. Eng. 71, 189 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Guo, J. Wang, L. Yang, J. Zhang, K. Jiang, W. Li, L. Wang, L. Jiang, CrystEngComm 13, 5045 (2011)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, C.-G. Niu, X.-J. Wen, H. Guo, X.-F. Zhao, D.-W. Huang, G.-M. Zeng, J. Colloid Interface Sci. 514, 396 (2018)CrossRefGoogle Scholar
  24. 24.
    P. Kumar, P.K. Singh, B. Battacharya, Ionics 17, 721 (2011)CrossRefGoogle Scholar
  25. 25.
    A.A. Ziabari, F.E. Ghodsi, Sol. Energy Mater. Sol. Cells 105, 249 (2012)CrossRefGoogle Scholar
  26. 26.
    G. Murali, D.A. Reddy, S. Sambasivam, R.P. Vijaylakshmi, Mater. Chem. Phys. 146, 399 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Shakouri-Arani, M. Salavati-Niasari, New J. Chem. 38, 1179 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, F. Huang, C. Liang, L. Zhou, X. Zhang, Q. Pang, J. Taiwan Inst. Chem. Eng. 60, 643 (2016)CrossRefGoogle Scholar
  29. 29.
    S.A. Vanalakar, S.S. Mali, R.C. Pawar, N.L. Tarwal, A.V. Moholkar, J.A. Kim, Y. Kwon, J.H. Kim, P.S. Patil, Electrochim. Acta 56, 2762 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, Q. Ma, H. Jia, Z. Wang, Ceram. Int. 42, 10751 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Yang, Z. Wang, X. Lv, Y. Wang, H. Jia, J. Photochem. Photobiol. A Chem. 329, 175 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Yang, Y. Wang, Z. Wang, X. Lv, H. Jia, J. Kong, M. Yu, Ceram. Int. 42, 7192 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, X. Yang, Q. Ma, J. Kong, H. Jia, Z. Wang, M. Yu, Appl. Surf. Sci. 340, 18 (2015)CrossRefGoogle Scholar
  34. 34.
    S.N. Jamble, K.P. Ghoderao, R.B. Kale, J. Phys. Chem. Solids 114, 109 (2018)CrossRefGoogle Scholar
  35. 35.
    X.-P. Shen, A.-H. Yuan, F. Wang, J.-M. Hong, Z. Xu, Solid State Commun. 133, 19 (2005)CrossRefGoogle Scholar
  36. 36.
    R.S. Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Chem. Phys. Lett. 684, 126 (2017)CrossRefGoogle Scholar
  37. 37.
    T.-H. Yu, W.-Y. Cheng, K.-J. Chao, S.-Y. Lu, Nanoscale 5, 7356 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Kundu, S. Khilari, D. Pradhan, A.C.S. Appl, Mater. Interfaces 9, 9669 (2017)CrossRefGoogle Scholar
  39. 39.
    N. Singh, J. Prakash, M. Misra, A. Sharma, R.K. Gupta, A.C.S. Appl, Mater. Interfaces 9, 28495 (2017)CrossRefGoogle Scholar
  40. 40.
    S.N. Jamble, K.P. Ghoderao, R.B. Kale, Mater. Res. Express 4, 115029 (2017)CrossRefGoogle Scholar
  41. 41.
    T. Thongtem, A. Phuruangrat, S. Thongtem, Ceram. Int. 35, 2817 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, K. Chen, J. Phys. Chem. B 109, 24268 (2005)CrossRefGoogle Scholar
  43. 43.
    V. Sivasubramanian, A.K. Arora, M. Premila, C.S. Sundar, V.S. Sastry, Physica E 31, 93 (2006)CrossRefGoogle Scholar
  44. 44.
    M.A. Mahdi, J.J. Hassan, S.J. Kasim, S.S. Ng, Z. Hassan, Bull. Mater. Sci. 37, 337 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Maleki, S. Mirdamadi, R. Ghasemzadeh, M.S. Ghamsari, Mater. Lett. 62, 1993 (2008)CrossRefGoogle Scholar
  46. 46.
    H. Wang, P. Fang, Z. Chen, S. Wang, J. Alloys Compd. 461, 418 (2008)CrossRefGoogle Scholar
  47. 47.
    K.P. Ghoderao, S.N. Jamble, R.B. Kale, Mater. Res. Express 4, 105009 (2017)CrossRefGoogle Scholar
  48. 48.
    V. Shanmugam, K.S. Jeyaperumal, Appl. Surf. Sci. 449, 617 (2018)CrossRefGoogle Scholar
  49. 49.
    M.A. Baghchesara, R. Yousefi, M. Cheraghizade, F. Jamali-Sheini, A. Saaedi, Ceram. Int. 42, 1891 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Arabzadeh, A. Salimi, J. Colloid Interface Sci. 479, 43 (2016)CrossRefGoogle Scholar
  51. 51.
    S.V. Mohite, V.V. Ganbavle, K.Y. Rajpure, J. Alloys Compd. 655, 106 (2016)CrossRefGoogle Scholar
  52. 52.
    M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You, C. Lv, J. Phys. Chem. Solids 113, 86 (2018)CrossRefGoogle Scholar
  53. 53.
    R. Lei, H. Ni, R. Chen, H. Gu, B. Zhang, W. Zhan, J. Colloid Interface Sci. 514, 496 (2018)CrossRefGoogle Scholar
  54. 54.
    R.S. Ganesh, S.K. Sharma, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, D.Y. Kim, Mater. Res. Bull. 94, 190 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Shweta N. Jamble
    • 1
  • Karuna P. Ghoderao
    • 1
  • Rohidas B. Kale
    • 1
    Email author
  1. 1.Department of PhysicsThe Institute of ScienceMumbaiIndia

Personalised recommendations