Advertisement

Surface reconstruction of Pt–Sn nanoparticles supported on Al2O3 in the presence of carbon monoxide

  • Abdellah Arrahli
  • Abdelhak KherbecheEmail author
  • Daniel Bianchi
Article
  • 9 Downloads

Abstract

FTIR spectroscopy and volumetric measurements are used to study the adsorption of CO (mainly 1% CO/He) in the temperature range 300–713 K on a 1.2% Pt–2.7% Sn/Al2O3 solid reduced in H2 at 713 K leading from XRD to PtSn bimetallic particles. This reveals the changes in the adsorption properties of the Pt sites for CO adsorption by comparison with monometallic Pt/Al2O3 solids and the stability of the Pt–Sn bimetallic particles in the presence of CO. At 300 K, FTIR spectroscopy shows that the insertion of Sn leads to (a) the total disappearance of the Pt sites forming bridged CO species (ascribed to a geometric effect of Sn) and (b) a significant shift in the position of the IR band of linear CO species on Pt sites from 2066 to 2044 cm−1 on Pt and Pt–Sn particles, respectively, ascribed to different adsorbed species, namely LPt and L1Pt–Sn, respectively. Moreover, it is shown that the insertion of Sn is associated with the decrease in the amount (in µmol/g of platinum) of Pt adsorption sites for CO adsorption. The evolution of the IR band of the L1Pt–Sn CO species with the increase in Ta in isobaric conditions reveals a modification of the surface of the Pt–Sn particles for Ta > ≈  460 K ascribed to enrichment in Pt° due to a surface reconstruction. The Pt sites of the reconstructed surface are characterized by an IR band at 2057 cm−1 after adsorption of CO at 300 K ascribed to a linear CO species named L2Pt–Sn. The reconstructed surface is stable in the presence of CO in the range 300–713 K and disappears by hydrogen reduction at 713 K. Successive surface reconstruction/hydrogen reduction at 713 K cycles lead to an ageing of the Pt–Sn particles associated with a progressive decrease in the amount of Pt° sites on the freshly prepared and reconstructed Pt–Sn particles. It is shown that the reconstruction of the Pt–Sn particles is probably due to the formation of SnOx species via oxygen species coming mainly from the hydroxyls groups of the support.

Keywords

Pt–Sn particles CO adsorption FTIR Reconstruction Ageing 

References

  1. 1.
    J.K.A. Clarke, Chem. Rev. 75, 291 (1975)CrossRefGoogle Scholar
  2. 2.
    W.M.H. Sachter, R.A. van Santen, Adv. Catal. 26, 69 (1977)Google Scholar
  3. 3.
    V. Ponec, Appl. Catal. A 222, 31 (2001)CrossRefGoogle Scholar
  4. 4.
    J.A. Rodriguez, Surf. Sci. Rep. 24, 223 (1996)CrossRefGoogle Scholar
  5. 5.
    J.M. Thomas, R. Raja, B.F.G. Johnson, S. Hermans, M.D. Jones, T. Khimyak, Ind. Eng. Chem. Res. 42, 1563 (2003)CrossRefGoogle Scholar
  6. 6.
    J.H. Sinfelt, Catal. Today 53, 305 (1999)CrossRefGoogle Scholar
  7. 7.
    M.S. Kumar, D. Chen, A. Holmen, J.C. Walmsley, Catal. Today 142, 17 (2009)CrossRefGoogle Scholar
  8. 8.
    J.J.H.B. Sattler, A.M. Beale, B.M. Weckhuysen, Phys. Chem. Chem. Phys. 15, 12095 (2013)CrossRefGoogle Scholar
  9. 9.
    F. Coloma, A. Sepflveda-Escribano, J.L.G. Fierro, F. Rodriguez-Reinoso, Appl. Catal. A 148, 63 (1996)CrossRefGoogle Scholar
  10. 10.
    P.D. Zgolicz, V.I. Rodríguez, I.M.J. Vilella, S.R. de Miguel, O.A. Scelza, Appl. Catal. A 392, 208 (2011)CrossRefGoogle Scholar
  11. 11.
    W.D. Michalak, J.M. Krier, S. Alayoglu, J.Y. Shin, K. An, K. Komvopoulos, Z. Liu, G.A. Somorjai, J. Catal. 312, 17 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Moscu, L. Veyre, C. Thieuleux, F. Meunier, Y. Schuurman, Catal. Today 258, 241 (2015)CrossRefGoogle Scholar
  13. 13.
    V.R. Stamenkovic, M. Arenz, C.A. Lucas, M.E. Gallagher, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 125, 2736 (2003)CrossRefGoogle Scholar
  14. 14.
    V.R. Stamenkovic, M. Arenz, B.B. Blizanac, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Surf. Sci. 576, 145 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Soma-Nota, W.M.H. Sachtler, J. Catal. 32, 315 (1974)CrossRefGoogle Scholar
  16. 16.
    A. Vicente, G. Lafaye, C. Especel, P. Marécot, C.T. Williams, J. Catal. 283, 133 (2011)CrossRefGoogle Scholar
  17. 17.
    E.A. Sales, J. Jove, M. de Jesus Mendes, F. Bozon-Verduraz, J. Catal. 195, 88 (2000)CrossRefGoogle Scholar
  18. 18.
    I. Jbir, J. Couble, S. Khaddar-Zine, Z. Ksibi, F. Meunier, D. Bianchi, ACS Catal. 6, 2545 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Bourane, O. Dulaurent, D. Bianchi, J. Catal. 195, 115 (2000)CrossRefGoogle Scholar
  20. 20.
    G. Ertl, J. Mol. Catal. 74, 1 (1992)CrossRefGoogle Scholar
  21. 21.
    G.T. Baronnetti, S.R. de Miguel, O.A. Scelza, M.A. Fritzler, A.A. Castro, Appl. Catal. 19, 77 (1985)CrossRefGoogle Scholar
  22. 22.
    G.T. Baronnetti, S.R. de Miguel, O.A. Scelza, A.A. Castro, Appl. Catal. 24, 109 (1986)CrossRefGoogle Scholar
  23. 23.
    S.R. de Miguel, G.T. Baronnetti, A.A. Castro, O.A. Scelza, Appl. Catal. 45, 61 (1988)CrossRefGoogle Scholar
  24. 24.
    Y.-X. Li, K.J. Klabunde, B. Davis, J. Catal. 128, 1 (1991)CrossRefGoogle Scholar
  25. 25.
    W.D. Rhodes, K. Lazar, V.I. Kovalchuk, J.L. d’Itri, J. Catal. 211, 173 (2002)Google Scholar
  26. 26.
    J. Ruiz-Martınez, A. Sepulveda-Escribano, J.A. Anderson, F. Rodrıguez-Reinoso, Catal. Today 123, 235 (2007)CrossRefGoogle Scholar
  27. 27.
    R. Srinivasan, L.A. Rice, B.H. Davis, J. Catal. 129, 257 (1991)CrossRefGoogle Scholar
  28. 28.
    A. Bourane, D. Bianchi, J. Catal. 218, 447 (2003)CrossRefGoogle Scholar
  29. 29.
    Y. Uemura, Y. Inada, K.K. Bando, T. Sasaki, N. Kamiuchi, K. Eguchi, A. Yagishita, M. Nomura, M. Tada, Y. Iwasawa, J. Phys. Chem. C 115, 5823 (2011)CrossRefGoogle Scholar
  30. 30.
    T. Chafik, O. Dulaurent, J.L. Gass, D. Bianchi, J. Catal. 179, 503 (1998)CrossRefGoogle Scholar
  31. 31.
    P.T. Fanson, W.N. Delgass, J. Lauterbach, J. Catal. 204, 35 (2001)CrossRefGoogle Scholar
  32. 32.
    G.J. Arteaga, J.A. Anderson, S.M. Becker, C.H. Rochester, J. Mol. Cat. A 145, 183 (1999)CrossRefGoogle Scholar
  33. 33.
    J. Couble, D. Bianchi, Appl. Catal. A 445–446, 1 (2012)CrossRefGoogle Scholar
  34. 34.
    H. Verbeek, W.M.H. Sachtler, J. Catal. 42, 257 (1976)CrossRefGoogle Scholar
  35. 35.
    J. Singh, R.C. Nelson, B.C. Vicente, S.L. Scott, J.A. van Bokhoven, Phys. Chem. Chem. Phys. 12, 5668 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Couble, D. Bianchi, J. Catal. 352, 672 (2017)CrossRefGoogle Scholar
  37. 37.
    T. Paffett, S.C. Gebhard, R.G. Windham, B.E. Koel, J. Phys. Chem. 94, 6831 (1990)CrossRefGoogle Scholar
  38. 38.
    F. Giraud, J. Couble, C. Geantet, N. Guilhaume, E. Puzenat, S. Loridant, S. Gros, L. Porcheron, M. Kanniche, D. Bianchi, J. Phys. Chem. C 119, 16089 (2015)CrossRefGoogle Scholar
  39. 39.
    A. Moscu, Y. Schuurman, L. Veyre, C. Thieuleux, F. Meunier, Chem. Commun. 50, 8590 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Moscu, C. Theodoridi, L. Cardenas, C. Thieuleux, D. Motta-Meira, G. Agostini, Y. Schuurman, F. Meunier, J. Catal. 359, 76 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Abdellah Arrahli
    • 2
  • Abdelhak Kherbeche
    • 2
    Email author
  • Daniel Bianchi
    • 1
  1. 1.Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256, CNRSUniversité Claude Bernard Lyon IVilleurbanneFrance
  2. 2.Laboratoire de Catalyse, Matériaux et Environnement (LCME)Université Sidi Mohammed Ben Abdellah, FèsFesMorocco

Personalised recommendations