Advertisement

Colloidal Ag@Pd core–shell nanoparticles showing fast catalytic eradication of dyes from water and excellent antimicrobial behavior

  • Eman A. Bakr
  • Heba G. El-Attar
  • Mohamed A. Salem
Article
  • 8 Downloads

Abstract

Colloidal Ag@Pd core–shell nanoparticles (NPs) were synthesized in aqueous medium following the citrate method. The progress of formation of the nanoparticles was monitored by ultraviolet–visible (UV–Vis) spectrophotometry. The core–shell nanoparticles were further characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), revealing their spherical shaped core–shell structure with particle size of around 9.8 nm. Degradation of Congo Red, Direct Blue 14, and Sunset Yellow dyes were selected as model reactions to demonstrate the high catalytic activity of the Ag@Pd core–shell NPs. The colors of the dyes disappeared within about 12–25 min at room temperature. The degradation efficiency of Direct Blue 14 (94.57 %) was greater than that of Congo Red (90.23 %), which was greater than that of Sunset Yellow (83.56 %). The combination of the dye, NaBH4, and the core–shell nanocatalyst in a one-pot system was a key factor for in situ destruction of the dye in solution. This work provides an applicable route for decontamination of dye-containing wastewater. The antimicrobial activity of the Ag@Pd core–shell NPs was evaluated qualitatively and quantitatively against model microbial organisms by calculating the minimum inhibitory concentration using the disk diffusion method. The inhibitory effect against bacteria and fungi increased with increase in the concentration of the core–shell NPs up to concentration of 25 mg/ml, indicating broad-spectrum activities.

Graphical abstract

Keywords

Ag@Pd Degradation Core–shell nanoparticles Congo Red Direct Blue 14 Sunset Yellow Antimicrobial application 

Notes

Acknowledgements

H.G.E.-A. thanks the Academy of Scientific Research and Technology, Egypt for the research grant provided (Scientists for Next Generation, Cycle Four).

References

  1. 1.
    A. Deshpande, R. Meghe, Int. J. Adv. Res. Eng. Technol. (IJARET) 5, 41–47 (2014)Google Scholar
  2. 2.
    H. Liu, P. Hou, W. Zhang, J. Wu, Colloids Surf. A 356, 21–27 (2010)CrossRefGoogle Scholar
  3. 3.
    G. Liu, M. Swierczewska, S. Lee, X. Chen, Nano Today 5, 524–539 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O.V. Bakina, A.N. Fomenko, M.S. Korovin, E.A. Glazkova, N.V. Svarovskaya, AIP Conf. Proc. 1760, 020003 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Chatterjee, S. Sarkar, K.J. Rao, S. Paria, Adv. Colloid Interface Sci. 209, 8–39 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    L. Chen, W. Zhao, Y. Jiao, X. He, J. Wang, Y. Zhang, Spectrochim. Acta, Part A 68, 484–490 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Milde, S. Dembski, A. Osvet, M. Batentschuk, A. Winnacker, G. Sext, Mater. Chem. Phys. 148, 1055–1063 (2014)CrossRefGoogle Scholar
  8. 8.
    O.A. Oviedo, M.M. Mariscal, E.P.M. Leiva, Electrochim. Acta 27, 8244–8251 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Shao, M. Wei, D.G. Evans, X. Duan, Chem. Eur. J. 19, 4100–4108 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    N. Toshima, T. Yonezawa, New J. Chem. 11, 1179–1201 (1998)CrossRefGoogle Scholar
  11. 11.
    S.W. Han, Y. Kim, K. Kim, J. Colloid Interface Sci. 208, 272–278 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    S. Link, Z.L. Wang, M.A. El-Sayed, J. Phys. Chem. B 103, 3529–3533 (1999)CrossRefGoogle Scholar
  13. 13.
    Y.M. Chung, H.K. Rhee, J. Colloid Interface Sci. 271, 131–135 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    S. Sun, C.B. Murry, D. Weller, L. Folks, A. Moser, Science 287, 1989–1992 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    B. Bian, Y. Hirotsu, K. Sato, T. Ohkubo, A. Makino, J. Electron Microsc. 48, 753–759 (1999)CrossRefGoogle Scholar
  16. 16.
    N. Sounderya, Y. Zhang, Recent Pat. Biomed. Eng. 1, 34–42 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Massoudinejad, M. Ghaderpoori, A. Shahsavani, A. Jafari, B. Kamarehie, A. Ghaderpoury, M.M. Amini, J. Mol. Liq. 255, 263–268 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Mohsenibandpei, M. Ghaderpoori, G. Hassani, H. Bahrami, Z. Bahmani, A.A. Alinejad, Global NEST J. 18, 546–558 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Yazdanbakhsh, Y. Hashempour, M. Ghaderpouri, Global NEST J. 20, 57–68 (2018)Google Scholar
  20. 20.
    A.A. Mohammadi, A. Alinejad, B. Kamarehie, S. Javan, A. Ghaderpoury, M. Ahmadpour, M. Ghaderpoori, Int. J. Environ. Sci. Technol. 14, 1959–1968 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Najafi, M.H. Deghani, R. Nabizadeh, A.H. Mahvi, K. Yaghmaian, F. Hossein, M. Ghaderpoori, M. Yousefi, A. Mohammadi, Data Brief. 17, 774–780 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Golmohammadi, M. Ahmadpour, A. Mohammadi, A. Alinejad, N. Mirzaei, M. Ghaderpoori, A. Ghaderpoori, Environ. Health Eng. Manag. J. 3, 107–113 (2016)CrossRefGoogle Scholar
  23. 23.
    M.A. Salem, E.A. Bakr, H.G. El-Attar, Spectrochim. Acta, Part A 188, 155–163 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Chen, L. Wang, S.L. Duce, S. Brown, S. Lee, A. Melzer, S.A. Cuschieri, P. André, J. Am. Chem. Soc. 132, 15022–15029 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    W.C. Law, K.T. Yong, I. Roy, G. Xu, H. Ding, E.J. Bergey, H. Zeng, P.N. Prasad, J. Phys. Chem. C 112, 7972–7977 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Prombutara, Y. Kulwatthanasal, N. Supaka, I. Sramala, S. Chareonpornwattana, Food Control 24, 184–190 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Montazer, A. Shamei, F. Alimohammadi, Prog. Org. Coat. 74, 270–276 (2012)CrossRefGoogle Scholar
  28. 28.
    L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P.K. Chu, Biomaterials 32, 5706–5716 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    L. Cheng, M.D. Weir, H.H.K. Xu, J.M. Antonucci, A.M. Kraigsley, N.J. Lin, S. Lin- Gibson, X. Zhou, Dent. Mater. 28, 561–572 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    M. Zhang, K. Zhang, B. de Gusseme, W. Verstraete, Water Res. 46, 2077–2087 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    E. Csapó, A. Oszkó, E. Varga, Á. Juhász, N. Buzás, L. Kőrösi, A. Majzik, I. Dékány, Colloids Surf. A 415, 281–287 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Wojtysiak, J. Solla-Gullón, P. Dłuzewski, A. Kudelski, Colloids Surf. A 441, 178–183 (2014)CrossRefGoogle Scholar
  33. 33.
    E.J. Corey, C.J. Helal, Angew. Chem. Int. Ed. 37, 1986–2012 (1998)CrossRefGoogle Scholar
  34. 34.
    M. Falorni, A. Porcheddu, M. Taddei, Tetrahydron Lett. 40, 4395–4396 (1999)CrossRefGoogle Scholar
  35. 35.
    T. Pridham, L. Lindenfelser, O. Shotwell, F. Stodola, R. Benedict, C. Foley, P. Jacks, W. Zaumeyer, W. Perston, J. Mitchell, Phytopathology 46, 568–575 (1956)Google Scholar
  36. 36.
    S. Shadomy, I. Epsinel, R. Cartwright, Laboratory studies agents: Susceptibility test and bioassays, in Manual of Clinical Microbiology, ed. by A. Lennette, W. Balows, H. Hausler, S. Shadomy 4th (Little Brown, Boston, 1985)Google Scholar
  37. 37.
    R. Richards, R. Cavill, J. Pharm. Sci. 65, 76–80 (1976)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    M. Ardenne, D. Beischer, Z. Elektrochem. 46, 270–277 (1940)Google Scholar
  39. 39.
    M. Bradford, Biochemistry 72, 248–252 (1976)Google Scholar
  40. 40.
    P. Kissinger, Laboratory Techniques in Electroanalytical Chemistry, 2nd edn. (Harcourt Brace College, Fort Worth, 1996)Google Scholar
  41. 41.
    B.R. Lakshmanan, Indian Inst. Sci. 6, 27–29 (1956)Google Scholar
  42. 42.
    C.M. Shen, Y.K. Su, H.T. Yang, T.Z. Yang, H.J. Gao, Chem. Phys. Lett. 373, 39–45 (2003)CrossRefGoogle Scholar
  43. 43.
    N.V. Long, M. Ohtaki, T.D. Hien, J. Randy, M. Nogami, Electrochim. Acta 56, 9133–9143 (2011)CrossRefGoogle Scholar
  44. 44.
    J.S. Bradley, E.W. Hill, S. Behal, C. Klein, A. Duteil, B. Chaudret, Chem. Mater. 4, 1234–1239 (1992)CrossRefGoogle Scholar
  45. 45.
    P. Prema, in Progress in Molecular and Environmental Bioengineering–From Analysis and Modeling to Technology Applications. Angelo Carpi (Ed.). INTECH. (2011). ISBN 978-953-307-268-5.  https://doi.org/10.5772/22114
  46. 46.
    S. Solomon, M. Bahadory, A. Jeyarajasingam, S. Rutkowsky, C. Boritz, J. Chem. Educ. 84, 65322–65325 (2007)Google Scholar
  47. 47.
    R. Rajesh, S. Kumar, R. Venkatesan, New J. Chem. 38, 1551–1558 (2014)CrossRefGoogle Scholar
  48. 48.
    T. Pridham, L. Lindenfelser, O. Shotwell, F. Stodola, R. Benedict, C. Foley, P. Jacks, W. Zaumeyer, W. Perston, J. Mitchell, Phytopathology 46, 568–575 (1956)Google Scholar
  49. 49.
    N.T. Abdel-Ghani, M.F. Abo El-Ghar, A.M. Mansour, Spectrochim. Acta, Part A 104, 134–142 (2013)CrossRefGoogle Scholar
  50. 50.
    B.G. Tweedy, Phytopathology 55, 910–914 (1964)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Eman A. Bakr
    • 1
  • Heba G. El-Attar
    • 1
    • 2
  • Mohamed A. Salem
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Academy of Scientific Research and TechnologyCairoEgypt

Personalised recommendations