Advertisement

Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles

  • Sayed Zia MohammadiEmail author
  • Hadi Beitollahi
  • Baharak Khodaparast
  • Rahman Hosseinzadeh
Article
  • 21 Downloads

Abstract

The purpose of the current research was to construct an intermediate (2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)-1-(naphthalen-2-yl) ethanone (2FTNE)) and a magnetic core–shell manganese ferrite nanoparticle (CMNP) to synthesis a modified carbon paste electrode (CPE). The electrochemical behavior of epinephrine (EP) was assessed by cyclic voltammetry and measured by square wave voltammetry by exposing to uric acid (UA) and folic acid (FA). High electrocatalytic activity for EP oxidation was seen in the 2FTNECMNP-modified CPE (2FTNEMCNPPE) compared to only CPE- and MCNP-modified CPE. The oxidation peak current of EP was linear within the range of 0.05–60 μM and its correlation coefficient was 0.999. The limit of detection was calculated at 0.016 μM for EP based on three times the standard deviation (3Sb) of the blank. According to the results, high selectivity, proper stability and good reproducibility was observed for the 2FTNEMCNPPE that detected EP, UA and FA successfully in an EP ampule, a folic acid tablet and urine samples, introducing 2FTNEMCNPPE with high capacity to develop the electrochemical sensors.

Keywords

Epinephrine Uric acid Folic acid Voltammetry Magnetic core–shell manganese ferrite nanoparticles Drug analysis 

References

  1. 1.
    B.N. Chandrashekar, B.E. Kumara Swamy, K.J. Gururaj, C. Cheng, J. Mol. Liq. 234, 164 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Tsunda, Anal. Bioanal. Chem. 386, 506 (2006)CrossRefGoogle Scholar
  3. 3.
    S. Esfandiari Baghbamidi, H. Beitollahi, S.Z. Mohammadi, S. Tajik, S. Soltani-Nejad, V. Soltani-Nejad, Chin. J. Catal. 34, 1869 (2013)CrossRefGoogle Scholar
  4. 4.
    F.W. Campbell, R.G. Compton, Anal. Bioanal. Chem. 396, 241 (2010)CrossRefGoogle Scholar
  5. 5.
    G.G. Wildgoose, C.E. Banks, R.G. Compton, Small 2, 182 (2006)CrossRefGoogle Scholar
  6. 6.
    H.A. Haper, Review of physiological chemistry, 16th edn. (Lange Medical Publications, San Francisco, 1977)Google Scholar
  7. 7.
    M. Mazloum-Ardakani, M. Abolhasani, B.F. Mirjalili, M.A. Sheikh-Mohseni, A. Dehghani-Firouzabadi, A. Khoshroo, Chin. J. Catal. 35, 201 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Hoegger, P. Morier, C. Vollet, D. Heini, F. Reymond, J.S. Rossier, Anal. Bioanal. Chem. 387, 267 (2007)CrossRefGoogle Scholar
  9. 9.
    H.B. He, C.M. Stein, B. Christman, A.J.J. Wood, J. Chromatogr. B 701, 115 (1997)CrossRefGoogle Scholar
  10. 10.
    A. Sanchez, E.A. Toledo-Pinto, M.L. Menezes, O.C.M. Pereira, Pharmacol. Res. 50, 481 (2004)CrossRefGoogle Scholar
  11. 11.
    I.J. Holcomb, S.A. Fusari, Anal. Chem. 53, 607 (1981)CrossRefGoogle Scholar
  12. 12.
    J.F. Gregory, B.P.F. Day, K.A. Ristow, J. Food Sci. 47, 1568 (1982)CrossRefGoogle Scholar
  13. 13.
    F. Li, H. Cui, X.Q. Lin, Anal. Chim. Acta 471, 187 (2002)CrossRefGoogle Scholar
  14. 14.
    D.C. Chen, D.Z. Zhan, C.W. Cheng, A.C. Liu, C.H. Chen, J. Chromatogr. B 750, 33 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Wei, G. Song, J.M. Lin, J. Chromatogr. A 1098, 166 (2005)CrossRefGoogle Scholar
  16. 16.
    J.V.G. Mateo, A. Kojto, J. Pharm. Biomed. 15, 1821 (1997)CrossRefGoogle Scholar
  17. 17.
    M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A.M.H. Shabani, J. Pharm. Biomed. 18, 877 (1998)CrossRefGoogle Scholar
  18. 18.
    P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, J. Pharm. Biomed. 22, 781 (2000)CrossRefGoogle Scholar
  19. 19.
    J. Michalowski, P. Halabura, Talanta 55, 1165 (2001)CrossRefGoogle Scholar
  20. 20.
    A.A. Al-warthan, Anal. Sci. 10, 919 (1994)CrossRefGoogle Scholar
  21. 21.
    M. Jung, B. Kim, D.W. Boo, H.Y. So, Bull. Korean Chem. Soc. 28, 745 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Tzontcheva, N. Denikova, Clin. Chim. Acta 297, 217 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Beitollahi, F. Garkani Nejad, Electroanalysis 28, 2237 (2016)CrossRefGoogle Scholar
  24. 24.
    D.Ş. Özden, Z. Durmuş, E. Dinç, Res. Chem. Intermed. 41, 1803 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Anal. Chem. 80, 9848 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Lamari, S. Zougar, I. Ghodbane, R. Kherrat, Res. Chem. Intermed. 42, 7977 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Molaakbari, A. Mostafavi, H. Beitollahi, R. Alizadeh, Analyst 139, 4356 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.P. Cui, Y. Zhu, Y.L. Li, W.X. Wang, F. Xu, Res. Chem. Intermed. 40, 3153 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Tajik, M.A. Taher, H. Beitollahi, J. Electroanal. Chem. 704, 137 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Mazloum-Ardakani, H. Beitollahi, M. Kazem Amini, F. Mirkhalaf, B.F. Mirjalili, A. Akbari, Analyst 136, 1965 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Beitollahi, S. Mohammadi, Mater. Sci. Eng., C 33, 3214 (2013)CrossRefGoogle Scholar
  32. 32.
    Z. Meng, H. Zhang, J. Zheng, Res. Chem. Intermed. 41, 3135 (2015)CrossRefGoogle Scholar
  33. 33.
    S.Z. Mohammadi, H. Beitollahi, M. Jasemi, A. Akbari, Electroanalysis 27, 2421 (2015)CrossRefGoogle Scholar
  34. 34.
    Sh Jahani, H. Beitollahi, Electroanalysis 28, 2022 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Wang, B. He, J. Nie, W. Yin, H. Fa, C. Chen, Res. Chem. Intermed. 44, 6689 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Beitollahi, S. Ghofrani Ivari, M. Torkzadeh Mahani, Mater. Sci. Eng., C 69, 128 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Tajik, M.A. Taher, H. Beitollahi, Electroanalysis 26, 796 (2014)CrossRefGoogle Scholar
  38. 38.
    E. Molaakbari, A. Mostafavi, H. Beitollahi, Sens. Actuator B 208, 195 (2015)CrossRefGoogle Scholar
  39. 39.
    S.Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Environ. Monit. Assess. 187, 122 (2015)CrossRefGoogle Scholar
  40. 40.
    R. Cristescu, C. Popescu, G. Socol, I. Iordache, I.N. Mihailescu, D.E. Mihaiescu, A.M. Grumezescu, A. Balan, I. Stamatin, C. Chifiriuc, C. Bleotue, C. Saviuc, M. Popa, D.B. Chrisey, Appl. Surf. Sci. 258, 9250 (2012)CrossRefGoogle Scholar
  41. 41.
    N.M. Mahmoodi, J. Ind. Eng. Chem. 20, 2050 (2014)CrossRefGoogle Scholar
  42. 42.
    S.Z. Mohammadi, A. Seyedi, Environ. Toxicol. Chem. 98, 705 (2015)Google Scholar
  43. 43.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)Google Scholar
  44. 44.
    N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, C. Sekar, Sens. Actuators B Chem. 221, 1412 (2015)CrossRefGoogle Scholar
  45. 45.
    E. Wierzbicka, M. Szultka-Młyńska, B. Buszewski, G.D. Sulka, Sens. Actuators B Chem. 237(206), 215 (2016)Google Scholar
  46. 46.
    B.N. Chandrashekar, B.E. Kumara Swamy, N.B. Ashoka, M. Pandurangachar, J. Mol. Liq. 165, 168 (2012)CrossRefGoogle Scholar
  47. 47.
    M. Taei, F. Hasanpour, N. Tavakkoli, M. Bahrameian, J. Mol. Liq. 211, 353 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
  3. 3.Department of Organic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations