Advertisement

Coordination compounds of heterocyclic bases: synthesis, characterization, computational and biological studies

  • Anthony C. Ekennia
  • Damian C. OnwudiweEmail author
  • Aderoju A. Osowole
  • Obinna C. Okpareke
  • Olujide O. Olubiyi
  • Joseph R. Lane
Article
  • 41 Downloads

Abstract

In this study, the geometry, spectroscopic characteristics and coordination patterns of three biologically active ligands and their Co(II) and Pd(II) complexes were explored using both experimental and theoretical techniques. The heterocyclic ligands (HL1–HL3) were synthesized by condensation reactions of 2-amino-6-methoxybenzothiazole with 2-hydroxy-1,4-naphthoquinone (1), 2-hydroxynaphthaldehyde (2) and 2-hydroxy-3-methoxybenzaldehyde (3). Co(II) and Pd(II) complexes of the ligands were subsequently synthesized and characterized using spectroscopic techniques, magnetic, conductance measurement and elemental analysis. The results of the spectroscopic analysis showed that the coordination of HL1 to the metal ions was through the oxygen atom of one of the carbonyl groups and the nitrogen atom of the deprotonated amine group. However, HL2 and HL3 were coordinated to the metal ions through the nitrogen atom of the azomethine group and the oxygen atom of the deprotonated hydroxyl group, resulting in N, O chromophores around the central metal ions. The magnetic moment and electronic spectra results of the metal complexes were consistent with the adoption of square planar geometry for the palladium(II) complexes and octahedral geometry for the cobalt(II) complexes. The compounds displayed good antibacterial activity against some clinically isolated bacterial strains of Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus. Molecular docking studies gave possible molecular targets of the various bacterial cells by the compounds. In most cases, the new compounds showed better molecular binding interactions than the crystallographic inhibitors. The antioxidant potentials of the ligands were evaluated using DPPH radical scavenging and ferrous ion chelating assays. The Fe(II) ion chelating potentials of the ligands were in the order HL3 < HL2 < HL1, with IC50 of 85 µg/mL, 69 µg/mL and 41 µg/mL, respectively. Similarly, the DPPH radical scavenging capacity of the ligands were in the descending order of HL1 > HL2 > HL3 with an IC50 of 35 µg/mL, 56 µg/mL and 96 µg/mL, respectively. The compounds could be important constituents in the synthesis or development of antibiotics and antioxidant drugs.

Keywords

Metal based drugs 2-amino-6-methoxybenzothiazole Schiff bases Molecular docking 

Supplementary material

11164_2018_3664_MOESM1_ESM.pdf (587 kb)
Supplementary material 1 (PDF 586 kb)

References

  1. 1.
    M. Boyd, A. Bhattacharjee, Organic Chemistry, 7th edn. (Pearson Education, New Delhi, 2010)Google Scholar
  2. 2.
    K. Salat, A. Moniczewski, T. Librowski, Mini. Rev. Med. Chem. 13, 335 (2013)PubMedGoogle Scholar
  3. 3.
    D.K. Jangid, A. Guleria, S. Dhadda, K. Yadav, P.G. Goswami, C.L. Khandelwa, Int. J. Pharm. Sci. Res. 8, 2960 (2017)Google Scholar
  4. 4.
    T. Eicher, S. Hauptmann, A. Speicher, The Chemistry of Heterocycles: Structure, Reactions, Syntheses and Applications, 2nd edn. (Wiley-VCH, Weinheim, 2003)CrossRefGoogle Scholar
  5. 5.
    B. Chen, W. Heal, in Comprehensive Heterocyclic Chemistry III, ed. by A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven, R.J.K. Taylor (Elsevier (Incl Pergamon), Amsterdam, 2008)Google Scholar
  6. 6.
    P.M. Chatrabhuji, K.S. Nimavat, K.B. Vyas, N.K. Undavia, RJPBCS 1, 451 (2010)Google Scholar
  7. 7.
    P.C. Sharma, A. Sinhmar, A. Sharma, H. Rajak, D.P. Pathak, J. Enzyme Inhib. Med. Chem. 28, 240 (2013)CrossRefGoogle Scholar
  8. 8.
    A.R. Ali, N. Siddiqui, J. Chem. 2013, Article ID 345198 (2013)Google Scholar
  9. 9.
    A.M. Siddiqui, M. Khazaei, M.G. Fehlings, Prog. Brain Res. 218, 15 (2015)CrossRefGoogle Scholar
  10. 10.
    A.C. Ekennia, A.A. Osowole, D.C. Onwudiwe, I. Babahan, C.U. Ibeji, S.N. Okafor, O.T. Ujam, Appl. Organom. Chem. 32, 4310 (2018)CrossRefGoogle Scholar
  11. 11.
    A.A. Osowole, A.C. Ekennia, B.O. Achugbu, A.A. Osowole, A.C. Ekenia, B.O. Achugbu, Res. Rev. J. Pharm. Anal. 2, 1 (2013)Google Scholar
  12. 12.
    A.S. El-Tabl, M.M. Abd El-Waheed, M.A. Wahba, N.A.A. El-Fadl, Bioinorg. Chem. Appl. 2015, 126023 (2015).  https://doi.org/10.1155/2015/126023 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    N. Feizi, R.V. Pinjari, S. Gejji, F. Sayyed, R. Gonnade, S.Y. Rane, J. Mol. Struct. 8, 144 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Kathawate, P.V. Joshi, T.K. Dash, S. Pal, M. Nikalje, T. Weyhermüller, V.G. Puranik, B. Konkimalla, S.S. Gawali, J. Mol. Struct. 9, 397 (2014)CrossRefGoogle Scholar
  15. 15.
    W.A. Al-Masoudi, R.M. Othman, R.H. Al-Asadi, M.A. Ali, Bas. J. Vet. Res. 15, 304 (2016)Google Scholar
  16. 16.
    A.C. Ekennia, D.C. Onwudiwe, C. Ume, E.E. Ebenso, Bioinorg. Chem. Appl. 2015, 913424 (2015).  https://doi.org/10.1155/2015/913424 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    A.C. Ekennia, D.C. Onwudiwe, A.A. Osowole, L.O. Olasunkanmi, E.E. Ebenso, J. Chem. 2016, 5129010 (2016).  https://doi.org/10.1155/2016/5129010 CrossRefGoogle Scholar
  18. 18.
    A.A. Osowole, A.C. Ekennia, O.O. Olubiyi, M. Olagunju, Res. Chem. Intermed. 43, 2565 (2017)CrossRefGoogle Scholar
  19. 19.
    I. Georgieva, N. Trendafilova, J. Phys. Chem. A 111, 13075 (2007)CrossRefGoogle Scholar
  20. 20.
    D.P. Timothy, P.N. David, R.W. Guy, V.P. Vanessa, E.W. Brian, O.B. Brian, M.I. Tina, J. Biol. Chem. 286, 8043 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Chen, T. Liu, C. Ma, J. Phys. Chem. A 114, 443 (2010)CrossRefGoogle Scholar
  22. 22.
    C.M. Tan, A.G. Therien, J. Lu, S.H. Lee, A. Caron, C.J. Gill, C. Lebeau-Jacob, L. Benton-Perdomo, J.M. Monteiro, P.M. Pereira, N.L. Elsen, J. Wu, K. Deschamps, M. Petcu, S. Wong, E. Daigneault, S. Kramer, L. Liang, E. Maxwell, D. Claveau, J. Vaillancourt, K. Skorey, J. Tam, H. Wang, T.C. Meredith, S. Sillaots, L. Wang-Jarantow, Y. Ramtohul, E. Langlois, F. Landry, J.C. Reid, G. Parthasarathy, S. Sharma, A. Baryshnikova, K.J. Lumb, M.G. Pinho, S.M. Soisson, T. Roemer, Sci. Transl. Med. 4, 635 (2012)Google Scholar
  23. 23.
    S.I. Gorelsky, L. Basumallick, J. Vura-Weis, R. Sarangi, K.O. Hodgson, B. Hedman, K. Fujisawa, E. Solomon, Inorg. Chem. 44, 4947 (2005)CrossRefGoogle Scholar
  24. 24.
    G. Nicola, J. Tomberg, R.F. Pratt, R.A. Nicholas, C. Davie, Biochemistry 49, 8094 (2010)CrossRefGoogle Scholar
  25. 25.
    V. Karunakaran, V. Balachandran, Spectrochim. Acta 98A, 229 (2012)CrossRefGoogle Scholar
  26. 26.
    W. Brands-williams, M.E. Cuvelier, C. Berset, L. Wiss, LWT-Food Sci. Technol. 18, 25 (1995)CrossRefGoogle Scholar
  27. 27.
    M. Malhotra, R.K. Rawal, D. Malhotra, R. Dhingra, A. Deep, P.C. Sharma, Arab. J. Chem. 10, S1022 (2017)CrossRefGoogle Scholar
  28. 28.
    M.A. Kremennaya, M.A. Soldatov, A.P. Budnyk, T.A. Lastovina, A.V. Soldatov, J. Struct. Chem. 57, 1348 (2016)CrossRefGoogle Scholar
  29. 29.
    P.A. Ajibade, G.A. Kolawole, P. O’Brien, M. Helliwell, J. Raftery, Inorg. Chim. Acta 359, 3111 (2006)CrossRefGoogle Scholar
  30. 30.
    A.C. Ekennia, A.A. Osowole, L.O. Olasunkanmi, D.C. Onwudiwe, O.O. Olubiyi, E.E. Ebenso, J. Mol. Struct. 1150, 279 (2017)CrossRefGoogle Scholar
  31. 31.
    A.A. Osowole, I. Ott, O.M. Ogunlana, Int. J. Inorg. Chem. 2012, 206417 (2012).  https://doi.org/10.1155/2012/206417 CrossRefGoogle Scholar
  32. 32.
    D.C. Onwudiwe, A.C. Ekennia, B.M.S. Mogwase, O.O. Olubiyi, E. Hosten, Inorg. Chim. Acta 450, 69 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Choudhary, R. Sharma, M. Nagar, M. Mohsin, J. Enzyme Inhib. Med. Chem. 26, 394 (2011)CrossRefGoogle Scholar
  34. 34.
    M.G. Abd El-Wahed, M.S. Refat, S.M. El-Meghharbel, J. Mol. Struct. 888, 416 (2008)CrossRefGoogle Scholar
  35. 35.
    I.P. Ejidike, P.A. Ajibade, Molecules 20, 9788 (2015)CrossRefGoogle Scholar
  36. 36.
    W.J. Geary, Coord. Chem. Rev. 7, 81 (1971)CrossRefGoogle Scholar
  37. 37.
    A.A. Al-Amiery, A.A.H. Kadhum, A.B. Mohamad, Bioinorg. Chem. Appl. 2012, 795812 (2012).  https://doi.org/10.1155/2012/795812 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    T.M.A. Alves, A.F. Silva, M. Brandão, T.S. Grandi, E. Smânia, A. Smânia Júnior, C.L. Zani, Memórias do Instituto Oswaldo Cruz. 95, 367 (2000)CrossRefGoogle Scholar
  39. 39.
    A.C.O. Silva, E.F. Santana, A.M. Saraiva, F.N. Coutinho, R.H.A. Castro, M.N.C. Pisciottano, E.L.C. Amorim, U.P. Albuquerque, Evid. Based Complement. Alternat. Med. 2013, 308980 (2013).  https://doi.org/10.1155/2013/308980 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    F. Chioma, A.C. Ekennia, A.A. Osowole, S.N. Okafor, C.U. Ibeji, D.C. Onwudiwe, T.U. Oguejiofo, Open Chem. 16, 184 (2018)CrossRefGoogle Scholar
  41. 41.
    M.E. De-Leo, A. Tranghee, M. Passantino, A. Mordente, M.M. Lizzio, T. Galeotti, A. Zoli, J. Rheumatol. 29, 2245 (2002)PubMedGoogle Scholar
  42. 42.
    M. Frisch, G. Trucks, H.B. Schlegel, J.F. Douglas, Gaussian 09 Revision A.02 (Gaussian Inc, Wallingford, 2009)Google Scholar
  43. 43.
    J.P. Fackler, L.R. Falvello, Techniques in Inorganic Chemistry (CRC Press, Taylor & Francis Group, Boca Raton, 2010)CrossRefGoogle Scholar
  44. 44.
    I.G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules (Elsevier, Amsterdam, 1976)Google Scholar
  45. 45.
    J. Zevallos, A. Toro-Labbé, J. Chilean Chem. Soc. 48, 39 (2003)CrossRefGoogle Scholar
  46. 46.
    J.M.F. Custodio, E.C.M. Faria, L.O. Sallum, V.S. Duarte, W.F. Vaz, G.L.B. de Aquino, P.S. Carvalho, H.B. Napolitano, J. Braz. Chem. Soc. 28, 2180 (2017)Google Scholar
  47. 47.
    F. Cuenú, J. Londoño-Salazar, J.E. Torres, R. Abonia, R.F. D’vries, J. Mol. Struct. 1152, 163 (2018)CrossRefGoogle Scholar
  48. 48.
    T. Koopmans, Physica 1, 104 (1934)CrossRefGoogle Scholar
  49. 49.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)CrossRefGoogle Scholar
  50. 50.
    P. Senet, Chem. Phys. Lett. 275, 527 (1997)CrossRefGoogle Scholar
  51. 51.
    R.G. Pearson, J. Am. Chem. Soc. 107, 6801 (1985)CrossRefGoogle Scholar
  52. 52.
    R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)CrossRefGoogle Scholar
  53. 53.
    B.J. Powell, T. Baruah, N. Bernstein, K. Brake, R.H. McKenzie, P. Meredith, M.R. Pederson, J. Chem. Phys. 120, 8608 (2004)CrossRefGoogle Scholar
  54. 54.
    C.H. Choi, M. Kertesz, J. Phys. Chem. A 101, 3823 (1997)CrossRefGoogle Scholar
  55. 55.
    A. Eşme, S.G. Sağdınç, Spectrochim. Acta 188A, 443 (2018)CrossRefGoogle Scholar
  56. 56.
    T.K. Kuruvilla, J.C. Prasana, S. Muthu, J. George, S.A. Mathew, Spectrochim. Acta 188A, 382 (2018)CrossRefGoogle Scholar
  57. 57.
    İ. Sıdır, Y.G. Sıdır, M. Kumalar, E. Taşal, J. Mol. Struct. 964, 134 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Anthony C. Ekennia
    • 1
  • Damian C. Onwudiwe
    • 2
    • 3
    Email author
  • Aderoju A. Osowole
    • 4
  • Obinna C. Okpareke
    • 5
    • 6
  • Olujide O. Olubiyi
    • 7
  • Joseph R. Lane
    • 6
  1. 1.Department of ChemistryAlex Ekwueme Federal University, Ndufu-AlikeAbakalikiNigeria
  2. 2.Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural ScienceNorth-West University (Mafikeng Campus)MmabathoSouth Africa
  3. 3.Department of Chemistry, Faculty of Natural and Agricultural Science, School of Physical and Chemical SciencesNorth-West University (Mafikeng Campus)MmabathoSouth Africa
  4. 4.Inorganic Unit, Department of ChemistryUniversity of IbadanIbadanNigeria
  5. 5.Department of Pure and Industrial ChemistryUniversity of NigeriaNsukkaNigeria
  6. 6.School of ScienceUniversity of WaikatoHamiltonNew Zealand
  7. 7.Department of Pharmaceutical Chemistry, Faculty of PharmacyObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations