Versatile, metal free and temperature-controlled g-C3N4 as a highly efficient and robust photocatalyst for the degradation of organic pollutants

  • Kasirajan Prakash
  • Puvaneswaran Senthil Kumar
  • Sekar Pandiaraj
  • Swaminathan KaruthapandianEmail author


In the present study, we report novel graphitic carbon nitride (g-C3N4) nanosheets at different calcination temperatures viz 500 °C, 550 °C and 600 °C by the simple hydrothermal synthesis for photocatalytic degradation of organic contaminants. The crystal structure, optical properties, and surface morphology were studied by various tools such as X-ray diffraction, UV–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy analysis. The as-synthesized g-C3N4 nanosheets exhibited a hexagonal phase and had good crystallinity with a crystallite size of ~ 68 nm. The photodegradation efficiency of g-C3N4 nanosheets showed excellent photocatalytic activity towards RhB and CV dye solution, and the dye degraded within 70 and 60 min, respectively. The g-C3N4 @550 °C nanosheets showed superior photocatalytic activity due to the adsorption capability and delayed electron hole recombination rate. In addition, the photocatalytic mechanism and reusability test were also found by trapping experiments.

Graphical abstract

The proposed photogenerated electron–hole separation mechanism of the g-C3N4 photocatalyst.


g-C3N4 nanosheets Visible light Rhodamine B Semiconductors 



The authors express their sincere thanks to the College managing board, Principal and Head of the Department, VHNSN College for providing necessary research facilities.


  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)CrossRefGoogle Scholar
  3. 3.
    Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, ACS Appl. Mater. Interfaces. 7, 16850 (2015)CrossRefGoogle Scholar
  4. 4.
    L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Catal. Sci. Technol. 4, 3235 (2014)CrossRefGoogle Scholar
  5. 5.
    C. Li, Y. Zhang, F. Dong, X. Du, H.W. Huang, J. Phys. Chem. C 120, 10381 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Cheng, Z. Hu, K. Lv, X. Wu, Q. Li, Y. Li, X. Li, J. Sun, Appl. Catal B-Environ. 232, 330 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Li, K. Lv, W. Ho, Z. Zhao, Y. Huang, Chin. J. Catal. 38, 321 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogi, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. 126, 12120 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Bian, C. Huang, R.Q. Zhang, Chem. Sus. Chem. 9, 2723 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Liu, H.Q. Wang, M. Antonietti, Chem. Soc. Rev. 45, 2308 (2016)CrossRefGoogle Scholar
  12. 12.
    X.D. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18 (2013)CrossRefGoogle Scholar
  13. 13.
    M. HanKel, D. Ye, L.Z. Wang, D.J. Searles, J. Phys. Chem. C 119, 21921 (2015)CrossRefGoogle Scholar
  14. 14.
    S.P. Lee, Sensors 8, 1508 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Chen, J. Zhang, Y. Wang, X.F. Chen, J.A. Zapien, C.S. Lee, Nanoscale 7, 17299 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Pawar, S. Kang, J.H. Park, J. Kim, S.H. Ahn, C.S. Lee, Sci. Rep. 6, 31147 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, T. Okada, H. Kobayashi, J. Phys. Chem. B 101, 8270 (1997)CrossRefGoogle Scholar
  18. 18.
    A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garica, Energy Environ. Sci. 5, 9217 (2012)CrossRefGoogle Scholar
  19. 19.
    J.X. Low, S.W. Cao, J.G. Yu, S. Wageh, Chem. Commun. 50, 10768 (2014)CrossRefGoogle Scholar
  20. 20.
    G. Dong, Z. Ai, L. Zhang, RSC Adv. 4, 5553 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Wang, J.C. Yu, Z. Shen, K.L. Chen, T. Gu, Chem. Commun. 50, 10148 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Pandiselvi, H. Fang, X. Huang, J. Wang, X. Xu, T. Li, J. Hazord. Mater. 314, 67 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Xu, C. Zhuang, Z. Zhou, J. Wang, X. Xu, T. Peng, Nano Res. 10, 2193 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Appl. Catal. B: Environ. 202, 611 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Huang, Q. Sun, K. Lv, Z. Zhang, M. Li, B. Li, Appl. Catal. B: Environ. 164, 420 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Ma, E. Liu, X. Hu, C. Tang, J. Wan, J. Li, J. Fan, Appl. Surf. Sci. 358, 246 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Ma, J. Li, E. Liu, J. Wan, X. Hu, J. Fan, Appl. Catal. B: Environ. 219, 467 (2017)CrossRefGoogle Scholar
  28. 28.
    N. Boonprakob, N. Wetchakun, S.P. Phant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Incessungvom, J. Colloid Interface Sci. 417, 402 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Ma, C. Wang, H. He, Appl. Catal B-Environ. 184, 28 (2016)CrossRefGoogle Scholar
  30. 30.
    M.J.M. Batidta, A. Kubacka, M.F. Garcia, Catal. Sci. Technol. 4, 2006 (2014)Google Scholar
  31. 31.
    Y. He, Y. Wang, L. Zhang, B. Teng, M. Fan, Appl. Catal B-Environ. 168, 1 (2015)Google Scholar
  32. 32.
    F.T. Li, Y.B. Xue, B. Li, Y.J. Hao, X.J. Wang, R.H. Liu, J. Zhao, Ind. Eng. Chem. Res. 53, 19540 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D.H. Sun, L.W. Bartels, P. Feng, J. Phys. Chem. C 116, 13708 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Han, L. Ge, C.F. Chen, Y.J. Li, X. Xiao, Y. Zhang, L. Guo, Appl. Catal. B Environ. 147, 546 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, X. Bai, C. Pan, J. He, Y. Zhu, J. Mater. Chem. 22, 11568 (2012)CrossRefGoogle Scholar
  36. 36.
    P.S. Kumar, S. Sobiya, M. Selvakumar, S.G. Babu, S. Karuthapandian, Energy Environ. Focus 5, 1 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Hong, Y. Yu, Z. Yi, H. Zhu, W. Wu, P. Ma, NANO 11, 1650121 (2016)CrossRefGoogle Scholar
  38. 38.
    P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, J. Mater. Chem. A 2, 20338 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Martha, A. Nashim, K.M. Parida, J. Mater. Chem. A 1, 7816 (2013)CrossRefGoogle Scholar
  40. 40.
    X. Rong, F. Qiu, H. Zhao, J. Yan, X. Zhu, D. Yang, Eur. J. Inorg. Chem. 8, 1359 (2015)CrossRefGoogle Scholar
  41. 41.
    P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22, 4763 (2012)CrossRefGoogle Scholar
  42. 42.
    K. Prakash, P.S. Kumar, P. Latha, K.S. Durai, R. Shanmugam, Mater. Res. Bull. 93, 112 (2017)CrossRefGoogle Scholar
  43. 43.
    Z. Zhao, Y. Sun, Q. Luo, F. Dong, H. Li, W.K. Ho, Nature 5, 14643 (2015)Google Scholar
  44. 44.
    D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z.G. Guo, J. Tang, Angew. Chem. Int. Ed. 53, 9240 (2014)CrossRefGoogle Scholar
  45. 45.
    Y.A. Li, J. Zhang, Q.S. Wang, Y.X. Jin, D.H. Huang, Q.L. Cui, G.T. Zou, J. Phys. Chem. B 114, 9429 (2010)CrossRefGoogle Scholar
  46. 46.
    S.W. Bian, Z. Ma, W.G. Song, J. Phys. Chem. C 113, 8668 (2009)CrossRefGoogle Scholar
  47. 47.
    L. Liu, D. Ma, H. Zheng, X.J. Li, M.J. Cheng, X.H. Bao, Micropor. Mesopor. Mat. 110, 216 (2008)CrossRefGoogle Scholar
  48. 48.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)CrossRefGoogle Scholar
  49. 49.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011)CrossRefGoogle Scholar
  50. 50.
    A.B. Jorge, D.J. Martin, M.T.S. Dhanoa, A.S. Rahman, N. Makwana, J. Tang, A. Sella, F. Corà, S. Firth, J.A. Darr, J. Phys. Chem. C 117, 7178 (2013)CrossRefGoogle Scholar
  51. 51.
    K. Prakash, P.S. Kumar, P. Latha, K. Saravanakumar, S. Karuthapandian, J. Inorg. Organomet. Polym. 28, 268 (2018)CrossRefGoogle Scholar
  52. 52.
    W. Lei, D. Portehault, R. Dimova, M. Antonietti, J. Am. Chem. Soc. 133, 7121 (2011)CrossRefGoogle Scholar
  53. 53.
    S.G. Babu, R. Vinoth, B. Neppolian, D.D. Dionysiou, M. Ashokkumar, J. Hazard. Mater. 291, 83 (2015)CrossRefGoogle Scholar
  54. 54.
    W. Lei, D. Portehault, R. Dimova, M. Antonietti, J. Am. Chem. Soc. 133, 7121 (2011)CrossRefGoogle Scholar
  55. 55.
    X. Zhang, F. Wu, N. Deng, J. Hazard. Mater. 185, 117 (2011)CrossRefGoogle Scholar
  56. 56.
    C. Karunakaran, S. Senthilvelan, S. Karuthapandian, Energy Mater. Sol. Cell. 89, 391 (2005)CrossRefGoogle Scholar
  57. 57.
    P.S. Kumar, S. Karuthapandian, M. Umadevi, A. Elangovan, V. Muthuraj, Mater. Focus 5, 128 (2016)CrossRefGoogle Scholar
  58. 58.
    K. Prakash, P.S. Kumar, S. Pandiaraj, K. Saravanakumar, S. Karuthapandian, J. Exp. Nanosci. 11, 1138 (2016)CrossRefGoogle Scholar
  59. 59.
    K. Prakash, S. Senthilkumar, S. Karuthapandian, Mater. Chem. Phys. 221, 34 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kasirajan Prakash
    • 1
  • Puvaneswaran Senthil Kumar
    • 1
  • Sekar Pandiaraj
    • 2
  • Swaminathan Karuthapandian
    • 1
    Email author
  1. 1.Department of ChemistryVHNSN CollegeVirudhunagarIndia
  2. 2.Department of ChemistryNational Institute of Technology, TrichyTiruchirappalliIndia

Personalised recommendations