Advertisement

Study on the visible-light photocatalytic performance of Ag3PO4/Cu2O composite

  • Kun Zhong
  • Jing Su
Article
  • 12 Downloads

Abstract

Ag3PO4/Cu2O composites were prepared by a facile wet chemical method. The specimens were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV–Vis diffuse reflectance spectroscopy. The specimens exhibited an excellent photocatalytic activity on the degradation of RhB than pure Ag3PO4 and Cu2O. Furthermore, the photocatalyst specimen was found to exhibit higher efficiency in hydrogen conversion. It was found that a 30 wt% Ag3PO4-loaded specimen showed an excellent hydrogen generation performance. The excellent photocatalytic activity was ascribed to the separation of e–h pairs via the Z-scheme method composed of Ag, Ag3PO4 and Cu2O. This study demonstrated the potential approach to the photocatalytic splitting water to release hydrogen as well as the environmental purification of organic pollutants under visible-light irradiation.

Keywords

Photocatalysis Water splitting Cuprous oxide Z-scheme 

Notes

Acknowledgements

The present work is supported by the National Natural Science Foundation of China (No. 51472123).

References

  1. 1.
    P.D. Tran, S.K. Batabyal, S.S. Pramana, J. Barber, L.H. Wong, S.C.J. Loo, Nanoscale 4, 3875 (2012)CrossRefGoogle Scholar
  2. 2.
    Y.F. Zhao, Z.Y. Yang, Y.X. Zhang, L. Jing, X. Guo, Z.T. Ke, P.W. Hu, G.X. Wang, Y.M. Yan, K.N. Sun, J. Phys. Chem. C 118, 14238 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.H. Su, S.H. Huang, P.Y. Kung, T.W. Shen, W.L. Wang, ACS Sustain. Chem. Eng. 3, 1965 (2015)CrossRefGoogle Scholar
  4. 4.
    O. Mehraj, N.A. Mir, B.M. Pirzada, S. Sabir, Appl. Surf. Sci. 332, 419 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Zhong, J. Su, Spectrosc. Lett. 48, 553 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Zhou, T. Zhang, Z. Wang, Phys. Scr. 90, 105701 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Kumar, T. Surendar, A. Baruah, V. Shanker, J. Mater. Chem. A 1, 5333 (2013)CrossRefGoogle Scholar
  8. 8.
    D.L. Jiang, J.J. Zhu, M. Chen, J.M. Xie, J. Colloid Interface Sci. 417, 115 (2014)CrossRefGoogle Scholar
  9. 9.
    J.C. Wang, L. Zhang, W.X. Fang, J. Ren, Y.Y. Li, H.C. Yao, J.S. Wang, Z.J. Li, A.C.S. Appl, Mater. Interfaces 7, 8631 (2015)CrossRefGoogle Scholar
  10. 10.
    L.Q. Ye, J.Y. Liu, C.Q. Gong, L.H. Tian, T.Y. Peng, L. Zan, ACS Catal. 2, 1677 (2012)CrossRefGoogle Scholar
  11. 11.
    T.T. Yang, W.T. Chen, Y.J. Hsu, K.H. Wei, T.Y. Lin, T.W. Lin, Appl. Catal. B 163, 343 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.H. Chiu, Y.J. Hsu, Nano Energy 31, 286 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.W. Su, W.H. Lin, Y.J. Hsu, K.H. Wei, Small 10, 4427 (2014)CrossRefGoogle Scholar
  14. 14.
    J.M. Li, H.Y. Cheng, Y.H. Chiua, Y.J. Hsu, Nanoscale 8, 15720 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Abulizi, G.H. Yang, J.J. Zhu, Ultrason. Sonochem. 21, 129 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.L. Tian, B.B. Chang, J. Fu, B.C. Zhou, J.Y. Liu, F.N. Xi, X.P. Dong, J. Solid State Chem. 212, 1 (2014)CrossRefGoogle Scholar
  17. 17.
    P.Z. He, L.M. Song, S.J. Zhang, X.Q. Wu, Q.W. Wei, Mater. Res. Bull. 51, 432 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.D. Luo, Q.Q. Huang, B. Li, L.H. Dong, M.G. Fan, F.Y. Zhang, Appl. Surf. Sci. 357, 1072 (2015)CrossRefGoogle Scholar
  19. 19.
    M.Y. Zhang, L. Lia, X.T. Zhang, RSC Adv. 5, 29693 (2015)CrossRefGoogle Scholar
  20. 20.
    L.L. Sun, G.H. Wang, R.R. Hao, D.Y. Han, S. Cao, Appl. Surf. Sci. 358, 91 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Chem. Mater. 20, 6543 (2008)CrossRefGoogle Scholar
  22. 22.
    Y.C. Pu, H.Y. Chou, W.S. Kuo, K.H. Wei, Y.J. Hsub, Appl. Catal. B 204, 21 (2017)CrossRefGoogle Scholar
  23. 23.
    T.T. Yang, W.T. Chen, Y.J. Hsu, K.H. Wei, T.Y. Lin, T.W. Lin, J. Phys. Chem. C 114, 11414 (2010)CrossRefGoogle Scholar
  24. 24.
    Y.M. He, L.H. Zhang, B.T. Teng, M.H. Fan, Environ. Sci. Technol. 49, 649 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.P. Zang, L.P. Li, X.G. Li, R. Lin, G.S. Li, Chem. Eng. J. 246, 277 (2014)CrossRefGoogle Scholar
  26. 26.
    G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Chemosphere 76, 1185 (2009)CrossRefGoogle Scholar
  27. 27.
    Y.M. He, L.H. Zhang, B.T. Teng, M.H. Fan, Sci. Technol. 49, 649 (2015)CrossRefGoogle Scholar
  28. 28.
    O. Mehraja, N.A. Mirb, B.M. Pirzadaa, S. Sabir, Appl. Surf. Sci. 332, 419 (2015)CrossRefGoogle Scholar
  29. 29.
    Y.L. Tian, B.B. Chang, J. Fu, B.C. Zhou, J.Y. Liu, F.N. Xi, X.P. Dong, J. Solid State Chem. 212, 1 (2014)CrossRefGoogle Scholar
  30. 30.
    A.L. Wang, X.S. Li, Y.B. Zhao, W. Wu, J.F. Chen, H. Meng, Powder Technol. 261, 42 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and OceanNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations