Advertisement

Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications

  • Mehdi Zahraoui
  • Adel Mokhtar
  • Mehdi Adjdir
  • Farid Bennabi
  • Rahmani Khaled
  • Amal Djelad
  • Abdelkader Bengueddach
  • Mohamed Sassi
Article
  • 14 Downloads

Abstract

In this work, the Al-magadiite is synthesized by the hydrothermal method. It is then used to prepare three copper exchanged materials using copper nitrate, copper chloride, and copper sulfate salts. The materials obtained were characterized and applied as antibacterial and antifungal agents against pathogen strains. The characterization methods showed the presence of four coordinated aluminum atoms in the magadiite framework. The presence of aluminum leads to the total exchange of interlayer sodium cations. Otherwise, the copper exchange rate is influenced by the nature of the counter-ion used. Indeed, the exchanged rate increased in the sense of copper nitrate > copper chloride > copper sulfate. The chemical analysis shows that the ion exchange of Al-magadiite with copper salts is accompanied with dehydration of Cu-exchanged materials. This result was confirmed by XRD diffraction, chemical analysis, and FTIR spectroscopy. This dehydration depends on the nature of the counter ion increase also in the sense of copper nitrate > copper chloride > copper sulfate. Tested as antibacterial and antifungal materials against pathogens strains, all the copper exchanged materials exhibited a good antibacterial activity against Gram-positive bacteria which increased with increasing the copper content of a sample. The best activity was observed in the exchanged sample prepared from copper nitrate. However, a low or no activity is observed against Gram-negative bacteria.

Keywords

Al-magadiite Copper II Counter-ions Ion-exchange Layer silicates Antibacterial activity 

References

  1. 1.
    Y.-L. Ma, B. Yang, T. Guo, L. Xie, Appl. Clay Sci. 50, 3 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Top, S. Ülkü, Appl. Clay Sci. 27, 1 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Ouyang, X. Yushan, T. Shaozao, S. Qingshan, C. Yiben, J. Rare Earths 27, 5 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Tong, M. Yulong, G. Peng, X. Zirong, Vet. Microbiol. 105, 2 (2005)CrossRefGoogle Scholar
  5. 5.
    D. Wei, W. Sun, W. Qian, Y. Ye, X. Ma, Carbohydr. Res. 344, 17 (2009)CrossRefGoogle Scholar
  6. 6.
    F. Wahid, H.-S. Wang, Y.-S. Lu, C. Zhong, L.-Q. Chu, Int. J. Biol. Macromol. 101, 690 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Jia, W. Hou, L. Wei, B. Xu, X. Liu, Dent. Mater. 24, 2 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Demirci, Z. Ustaoğlu, G.A. Yılmazer, F. Sahin, N. Baç, Appl. Biochem. Biotechnol. 172, 3 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Rivera-Garza, M. Olguın, I. Garcıa-Sosa, D. Alcántara, G. Rodrıguez-Fuentes, Microporous Mesoporous Mater. 39, 3 (2000)CrossRefGoogle Scholar
  10. 10.
    H. Pourabolghasem, M. Ghorbanpour, R. Shayegh, J. Phys. Sci. 27, 2 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Hu, Z. Xu, M. Xia, Vet. Microbiol. 109, 1 (2005)CrossRefGoogle Scholar
  12. 12.
    H.P. Eugster, Science 157, 3793 (1967)CrossRefGoogle Scholar
  13. 13.
    S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials (CRC Press, Boca Raton, 2004)Google Scholar
  14. 14.
    F. Feng, K.J. Balkus, J. Porous Mater. 10, 1 (2003)Google Scholar
  15. 15.
    R.A. Fletcher, D.M. Bibby, Clays Clay Miner. 35, 4 (1987)CrossRefGoogle Scholar
  16. 16.
    M. Sassi, J. Miehé-Brendlé, J. Patarin, A. Bengueddach, Clay Miner. 40, 3 (2005)CrossRefGoogle Scholar
  17. 17.
    Y.-R. Wang, S.-F. Wang, L.-C. Chang, Appl. Clay Sci. 33, 1 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Mokhtar, Z.A.K. Medjhouda, A. Djelad, A. Boudia, A. Bengueddach, M. Sassi, Chem. Pap. 72, 1 (2018)CrossRefGoogle Scholar
  19. 19.
    C. Eypert-Blaison, L.J. Michot, B. Humbert, M. Pelletier, F. Villiéras, J.-B. de la Caillerie, J. Phys. Chem. B 106, 3 (2002)CrossRefGoogle Scholar
  20. 20.
    N. Homhuan, S. Bureekaew, M. Ogawa, Langmuir 33, 38 (2017)CrossRefGoogle Scholar
  21. 21.
    C.S. Kim, D.M. Yates, P.J. Heaney, Clays Clay Miner. 45, 6 (1997)CrossRefGoogle Scholar
  22. 22.
    U. Brenn, W. Schwieger, K. Wuttig, Colloid Polym. Sci. 277, 4 (1999)CrossRefGoogle Scholar
  23. 23.
    N. Mizukami, M. Tsujimura, K. Kuroda, M. Ogawa, Clays Clay Miner. 50, 6 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Ogawa, Y. Takahashi, Clay Sci. 13, 4/5 (2007)Google Scholar
  25. 25.
    S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Desalin Water Treat 57, 20 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Mokhtar, A. Djelad, M. Adjdir, M. Zahraoui, A. Bengueddach, M. Sassi, J. Mol. Struct. 1171, 190 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Res. Chem. Intermed. (2018).  https://doi.org/10.1007/s11164-018-3502-1 CrossRefGoogle Scholar
  28. 28.
    K. Isoda, K. Kuroda, M. Ogawa, Chem. Mater. 12, 6 (2000)CrossRefGoogle Scholar
  29. 29.
    O.-Y. Kwon, H.-S. Shin, S.-W. Choi, Chem. Mater. 12, 5 (2000)CrossRefGoogle Scholar
  30. 30.
    N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa, Appl. Clay Sci. 19, 1 (2001)CrossRefGoogle Scholar
  31. 31.
    T. Sirinakorn, K. Imwiset, S. Bureekaew, M. Ogawa, Appl. Clay Sci. 153, 1 (2018)CrossRefGoogle Scholar
  32. 32.
    D.L. Guerra, A.A. Pinto, C. Airoldi, R.R. Viana, J. Solid State Chem. 181, 12 (2008)Google Scholar
  33. 33.
    Y. Ide, N. Ochi, M. Ogawa, Angew. Chem. 123, 3 (2011)CrossRefGoogle Scholar
  34. 34.
    D.L. Guerra, A.A. Pinto, J.A. de Souza, C. Airoldi, R.R. Viana, J. Hazard. Mater. 166, 2 (2009)CrossRefGoogle Scholar
  35. 35.
    B. Royer, N.F. Cardoso, E.C. Lima, T.R. Macedo, C. Airoldi, Sep. Sci. Technol. 45, 1 (2009)CrossRefGoogle Scholar
  36. 36.
    G.L. Paz, E.C. Munsignatti, H.O. Pastore, J. Mol. Catal. A Chem. (2016).  https://doi.org/10.1016/j.molcata.2016.02.014 CrossRefGoogle Scholar
  37. 37.
    S.J. Kim, M.H. Kim, G. Seo, Y.S. Uh, Res. Chem. Intermed. 38, 6 (2012)Google Scholar
  38. 38.
    G. Novodárszki, J. Valyon, Á. Illés, S. Dóbé, M.R. Mihályi, React. Kinet. Mech. Catal. 121, 1 (2017)CrossRefGoogle Scholar
  39. 39.
    X. Sun, J. King, J.L. Anthony, Chem. Eng. J. 147, 1 (2009)CrossRefGoogle Scholar
  40. 40.
    Z. Wang, T.J. Pinnavaia, Chem. Mater. 10, 7 (1998)Google Scholar
  41. 41.
    Z. Wang, T. Lan, T.J. Pinnavaia, Chem. Mater. 8, 9 (1996)CrossRefGoogle Scholar
  42. 42.
    A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Int. J. Biol. Macromol. 118, 2149 (2018)CrossRefGoogle Scholar
  43. 43.
    N. Takahashi, K. Kuroda, J. Mater. Chem. 21, 38 (2011)CrossRefGoogle Scholar
  44. 44.
    G. Pál-Borbély, A. Auroux, in Studies in Surface Science and Catalysis, ed. by H.K. Beyer, H.G. Karge, I. Kirisci, J.B. Nagy (Elsevier, Amsterdam, 1995), pp. 55–62Google Scholar
  45. 45.
    D. Sangian, S. Naficy, F. Dehghani, Y. Yamauchi, Macromol. Chem. Phys. 219, 13 (2018)CrossRefGoogle Scholar
  46. 46.
    G.B. Superti, E.C. Oliveira, H.O. Pastore, A. Bordo, C. Bisio, L. Marchese, Chem. Mater. 19, 17 (2007)CrossRefGoogle Scholar
  47. 47.
    W. Lim, J.-H. Jang, N.-Y. Park, S.-M. Paek, W.-C. Kim, M. Park, J. Mater. Chem. A 5, 8 (2017)Google Scholar
  48. 48.
    A.M. Scheidegger, G.M. Lamble, D.L. Sparks, J. Colloid Interface Sci. 186, 1 (1997)CrossRefGoogle Scholar
  49. 49.
    Q. Wang, Y. Zhang, J. Zheng, Y. Wang, T. Hu, C. Meng, Dalton Trans. 46, 13 (2017)Google Scholar
  50. 50.
    Y. Chen, G. Yu, F. Li, J. Wei, Appl. Clay Sci. 88, 163–169 (2014)CrossRefGoogle Scholar
  51. 51.
    Y. Tong, Y. Zhang, N. Tong, Z. Zhang, Y. Wang, X. Zhang, S. Zhu, F. Li, X. Wang, Catal. Sci. Technol. 6, 20 (2016)CrossRefGoogle Scholar
  52. 52.
    J.P. Montañez, S. Gómez, A.N. Santiago, L.B. Pierella, J. Braz. Chem. Soc. 26, 6 (2015)Google Scholar
  53. 53.
    M. Zanjanchi, A. Razavi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 1 (2001)CrossRefGoogle Scholar
  54. 54.
    A.N. Pestryakov, V.P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfänder, A. Knop-Gericke, Chem. Phys. Lett. 385, 3 (2004)CrossRefGoogle Scholar
  55. 55.
    I.R. Iznaga, V. Petranovskii, G.R. Fuentes, C. Mendoza, A.B. Aguilar, J. Colloid Interface Sci. 316, 2 (2007)Google Scholar
  56. 56.
    S. Velu, K. Suzuki, S. Hashimoto, N. Satoh, F. Ohashi, S. Tomura, J. Mater. Chem. 11, 8 (2001)CrossRefGoogle Scholar
  57. 57.
    Z. Ismagilov, S. Yashnik, V. Anufrienko, T. Larina, N. Vasenin, N. Bulgakov, S. Vosel, L. Tsykoza, Appl. Surf. Sci. 226, 1 (2004)CrossRefGoogle Scholar
  58. 58.
    A. Mokhtar, A. Djelad, A. Boudia, M. Sassi, A. Bengueddach, J. Porous Mater. 24, 6 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie des Matériaux (LCM), Faculté des Sciences Exactes et AppliquéesUniversité Oran1OranAlgeria
  2. 2.Département de sciences techniquesCentre universitaire Ahmed Zabana de RelizaneRelizaneAlgeria
  3. 3.Institute of Functional Interfaces SectionKarlsruhe Institute of Technology (KIT)Eggenstein-Leopoldshafen, KarlsruheGermany
  4. 4.Laboratoire de Chimie Appliquée LACCCentre universitaire Ain TemouchentAin TemouchentAlgeria
  5. 5.Laboratoire Ecodéveloppement des espacesUniversity of Sidi Bel Abbès, Djillali LiabesSidi Bel AbbèsAlgeria

Personalised recommendations