Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 1, pp 103–118 | Cite as

Synthesis of multiple boron-containing analogs via Ugi-4CR

  • Yi-Wei Chen
  • Pei-Chun Liao
  • Yu-Xuan Zhang
  • Shang-Yi Yeh
  • Yu-Hsuan Wu
  • Shuo-Bei Qiu
  • Pei-Ni Tsai
  • Zhuo Xin
  • Yen-Yu Ting
  • Hsien-Chi Chen
  • Siu-Fung Cheung
  • Chen-Yun Hsu
  • Wan-Hsing Lien
  • Po-Shen PanEmail author
Article
  • 39 Downloads

Abstract

One of the most significant challenges in boron neutron capture therapy (BNCT) is to have an ideal boron delivery agent which can deliver sufficient numbers of boron atoms to designated tumor cells. In this work, mild synthetic conditions for synthesis of dipeptidyl multiple boron-containing analogs under microwave-assisted condition were investigated. The results showed that the reaction generally took place at 50 °C, but higher reaction temperature was required when a fluorinated building block was used. The resulting peptidyl skeletons generated by Ugi four-component reaction resemble basic cell metabolites and could potentially be used as alternative replacements for current boron carrier agents in BNCT.

Keywords

Boron neutron capture therapy Boron Multicomponent reaction Ugi reaction 

Notes

Acknowledgements

This research was supported by the Ministry of Science and Technology in Taiwan (MST-104-2113-M-032-011, MST-105-2113-M-032-002). We thank the Department of Chemistry of Tamkang University for equipment and financial support. We thank Ms. Shen–Shen Chen for conducting 11B NMR experiments.

References

  1. 1.
    M.J. Luderer, P.D.L. Puente, A.K. Azab, Pharm. Res. 32, 2824 (2015)CrossRefGoogle Scholar
  2. 2.
    R.F. Barth, M.G. Vicente, O.K. Harling, W.S. Kiger, K.J. Riley, P.J. Binns, Radiat. Oncol. 7, 7 (2012)CrossRefGoogle Scholar
  3. 3.
    L. Pellettieri, B. H-Stenstam, A. Rezaei, V. Giusti, K. Sköld, Acta Neurol. Scand. 117, 191 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Chandra, R.F. Barth, S.A. Haider, W. Yang, T. Huo, A.L. Shaikh, PLoS ONE 8, 75377 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Malan, C. Morin, Synlett 2, 167 (1996)CrossRefGoogle Scholar
  6. 6.
    H.R. Snyder, A.J. Reedy, W.J. Lennarz, J. Am. Chem. Soc. 80, 89 (1958)CrossRefGoogle Scholar
  7. 7.
    A. Sood, C.K. Sood, B.F. Spielvogel, I.H. Hall, Eur. J. Med. Chem. 25, 301 (1990)CrossRefGoogle Scholar
  8. 8.
    K. Ito, A. Hikida, S. Kitagawa, T. Misaka, K. Abe, Y. Kawarasaki, Biosci. Biotechnol. Biochem. 76, 628 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Kitagawa, N. Mukai, Y. Furukawa, K. Adachi, A. Mizuno, H. Iefuj, J. Biosci. Bioeng. 105, 360 (2008)CrossRefGoogle Scholar
  10. 10.
    R.-C. Lian, M.-H. Lin, P.-H. Liao, J.-J. Fu, M.-J. Wu, Y.-C. Wu, F.-R. Chang, C.-C. Wu, P.-S. Pan, Tetrahedron 70, 1800 (2014)CrossRefGoogle Scholar
  11. 11.
    S.-H. Chung, T.-J. Lin, Q.-Y. Hu, C.-H. Tsai, P.-S Pan, Molecules, 18, 12346 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yi-Wei Chen
    • 1
  • Pei-Chun Liao
    • 2
  • Yu-Xuan Zhang
    • 2
  • Shang-Yi Yeh
    • 2
  • Yu-Hsuan Wu
    • 2
  • Shuo-Bei Qiu
    • 2
  • Pei-Ni Tsai
    • 2
  • Zhuo Xin
    • 2
  • Yen-Yu Ting
    • 2
  • Hsien-Chi Chen
    • 2
  • Siu-Fung Cheung
    • 2
  • Chen-Yun Hsu
    • 2
  • Wan-Hsing Lien
    • 2
  • Po-Shen Pan
    • 2
    Email author
  1. 1.Department of OncologyTaipei Veterans General HospitalTaipei CityTaiwan
  2. 2.Department of ChemistryTamkang UniversityNew Taipei CityTaiwan

Personalised recommendations