Advertisement

Synthesis and crystal structures of phenylalanine ester-introduced palladium(II) and platinum(II) complexes and their cytotoxicities

  • Akihiro Nomoto
  • Nozomi Sakamoto
  • Yuta Sakai
  • Keisuke Fukumoto
  • Shun-Ichiro Ogura
  • Katao Shouhei
  • Kiyomi Kakiuchi
  • Jun-ichi Kikuchi
  • Shigenobu Yano
  • Akiya Ogawa
Article

Abstract

Phenylalanine ester-introduced palladium(II) and platinum(II) complexes were synthesized. Taking advantage of the formation of Schiff bases by amino acids as an intermediate, the pyridylimine moiety coordinated to a metal center. Single crystals of each complex were obtained successfully, and their molecular structures were clarified in detail. The Pd(II) complex showed remarkable cytotoxicity compared to the Pt(II) complex.

Keywords

Phenylalanine Schiff base Crystal structure Palladium(II) complex Platinum(II) complex 

Notes

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research (C, 26410056), from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and also supported by Kyoto-Advanced Nanotechnology Network.

References

  1. 1.
    A. Garoufis, S.K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 253, 1384 (2009)CrossRefGoogle Scholar
  2. 2.
    MdN Alam, F. Hug, Coord. Chem. Rev. 316, 36 (2016)CrossRefGoogle Scholar
  3. 3.
    W.M. Motswainyana, M.O. Onani, A.M. Madiehe, M. Saibu, N. Thovhogi, R.A. Lalancette, J. Inorg. Biochem. 129, 112 (2013)CrossRefPubMedCentralGoogle Scholar
  4. 4.
    T.W. Hambley, Coord. Chem. Rev. 166, 181 (1997)CrossRefGoogle Scholar
  5. 5.
    A. Gelasco, S.J. Lippard, Biochemistry 37, 9230 (1998)CrossRefPubMedCentralGoogle Scholar
  6. 6.
    D. Wang, S.J. Lippard, Nat. Rev. Drug Discov. 4, 307 (2005)CrossRefPubMedCentralGoogle Scholar
  7. 7.
    L. Kelland, Nat. Rev. Cancer 7, 573 (2007)CrossRefGoogle Scholar
  8. 8.
    T. Tsubomura, S. Yano, K. Kobayashi, T. Sakurai, S. Yoshikawa, J. Chem. Soc. Chem. Commun. 6, 459 (1986) CrossRefGoogle Scholar
  9. 9.
    T. Tsubomura, M. Ogawa, S. Yano, K. Kobayashi, T. Sakurai, S. Yoshikawa, Inorg. Chem. 29, 2622 (1990)CrossRefGoogle Scholar
  10. 10.
    I. Brudziñska, Y. Mikata, M. Obata, C. Ohtsuki, S. Yano, Bioorg. Med. Chem. Lett. 14, 2533 (2004)CrossRefPubMedCentralGoogle Scholar
  11. 11.
    S. Yano, H. Ohi, M. Ashizak, M. Obata, Y. Mikata, R. Tanaka, T. Nishioka, I. Kinoshita, Y. Sugai, I. Okura, S.-I. Ogura, J.A. Czaplewska, M. Gottschaldt, U.S. Schubert, T. Funabiki, K. Morimoto, M. Nakai, Chem. Biodiv. 9, 1903 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Tanaka, H. Kataoka, S. Yano, H. Ohi, K. Kawamoto, T. Shibahara, T. Mizoshita, Y. Mori, S. Tanida, T. Kamiya, T. Joh, BMC Cancer 13, 237 (2013)CrossRefPubMedCentralGoogle Scholar
  13. 13.
    O. Warburg, Science 24, 309 (1956)CrossRefGoogle Scholar
  14. 14.
    G. Matthew, H. Vander, L.C. Cantley, C.B. Thompson, Science 324, 1029 (2009)CrossRefGoogle Scholar
  15. 15.
    K.H. Puthraya, T.S. Srivastava, A.J. Amonkar, M.K. Adwankar, M.P. Chitnis, J. Inorg. Biochem. 26, 45 (1986)CrossRefPubMedCentralGoogle Scholar
  16. 16.
    E. Chardon, G. Dahm, G. Guichard, S. Bellemin-Laponnaz, Organometallics 31, 7618 (2012)CrossRefGoogle Scholar
  17. 17.
    E. Simińska, M. Koba, Amino Acids 48, 1339 (2016)CrossRefGoogle Scholar
  18. 18.
    S.-Y. Kim, Biomol. Ther. 23, 99 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Moradell, J. Lorenzo, A. Rovira, S. van Zutphen, F.X. Avilés, V. Moreno, R. de Llorens, M.A. Martine, J. Reedijk, A. Llobet, J. Inorg. Biochem. 98, 1933 (2004)CrossRefPubMedCentralGoogle Scholar
  20. 20.
    L.-W. Wang, S.-Y. Liu, J.-J. Wang, W. Peng, S.-H. Li, G.-Q. Zhou, X.-Y. Qin, S.-X. Wang, J.-C. Zhang, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1049 (2015)CrossRefGoogle Scholar
  21. 21.
    H.J. Kim, S.H. Jang, J.S. Ryu, J.E. Lee, Y.C. Kim, M.K. Lee, T.W. Jang, S.Y. Lee, H. Nakamura, N. Nishikata, M. Mori, Y. Noguchi, H. Miyano, K.Y. Lee, Lung Cancer 90, 522 (2015)CrossRefPubMedCentralGoogle Scholar
  22. 22.
    J.H. Price, A.N. Williamson, R.F. Schramm, B.B. Wayland, Inorg. Chem. 11, 1280 (1972)CrossRefGoogle Scholar
  23. 23.
    J. Carmichael, W.G. DeGraff, A.F. Gazdar, J.D. Minna, J.B. Mitchell, Cancer Res. 47, 936 (1987)PubMedPubMedCentralGoogle Scholar
  24. 24.
    H. van der Poel, G. van Koten, Inorg. Chem. 20, 2950 (1981)CrossRefGoogle Scholar
  25. 25.
    S.J. Scales, H. Zhang, P.A. Chapman, C.P. McRory, E.J. Derrah, C.M. Vogels, M.T. Saleh, A. Decken, S.A. Westcott, Polyhedron 23, 2169 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Cloete, S.F. Mapolie, J. Mol. Catal. A 243, 221 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Kim, E. Kim, H.-J. Lee, H. Lee, Polyhedron 69, 149 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Mikata, Y. Onchi, K. Tabata, S-i Ogura, I. Okura, H. Ono, S. Yano, Tetrahedron Lett. 39, 4505 (1998)CrossRefGoogle Scholar
  29. 29.
    K. Oda, S-i Ogura, I. Okura, J. Photochem. Photobiol. B Biol. 59, 20 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Akihiro Nomoto
    • 1
  • Nozomi Sakamoto
    • 1
  • Yuta Sakai
    • 1
  • Keisuke Fukumoto
    • 1
  • Shun-Ichiro Ogura
    • 2
  • Katao Shouhei
    • 3
  • Kiyomi Kakiuchi
    • 3
  • Jun-ichi Kikuchi
    • 3
  • Shigenobu Yano
    • 3
  • Akiya Ogawa
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan
  2. 2.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
  3. 3.Graduate School of Materials ScienceNara Institute of Science and Technology (NAIST)IkomaJapan

Personalised recommendations