Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 12, pp 7873–7889 | Cite as

Synthesis of benzamides through direct condensation of carboxylic acids and amines in the presence of diatomite earth@IL/ZrCl4 under ultrasonic irradiation

  • Masoumeh Ahmadi
  • Leila MoradiEmail author
  • Masoud Sadeghzadeh
Article
  • 83 Downloads

Abstract

A green, rapid, mild and highly efficient pathway for the preparation of benzamide derivatives is reported. The reaction was performed through direct condensation of benzoic acids and amines under ultrasonic irradiation in the presence of Lewis acidic ionic liquid immobilized on diatomite earth (diatomite earth@IL/ZrCl4). A new, highly efficient and green solid acid catalyst was easily prepared via a two-step procedure and used as an effective reusable catalyst. The prepared catalyst provides active sites for the synthesis of benzamides. The advantages of this method are the use of a superior and recoverable catalyst, low reaction times, simple procedure, high-yielding and eco-friendly process and use of ultrasonic irradiation as a green and powerful technology. Since benzamides are used widely in the pharmaceutical, paper and plastic industries, and also as an intermediate product in the synthesis of therapeutic agents, the presented new synthetic methods for this type of compounds can be of considerable importance.

Keywords

Benzamides Diatomite earth Solid acid catalyst Ultrasound irradiation Diatomite earth@IL/ZrCl4 

Notes

Acknowledgement

The authors are grateful for financial support from the University of Kashan by Grant No. 784946.

References

  1. 1.
    J.W. Comerford, J.H. Clark, D.J. Macquarrie, S.W. Breeden, Chem. Commun. 18, 2562 (2009)CrossRefGoogle Scholar
  2. 2.
    P.S. Chaudhari, S.D. Salim, R.V. Sawant, K.G. Akamanchi, Green Chem. 12, 1707 (2010)CrossRefGoogle Scholar
  3. 3.
    D.J.C. Constable, P.J. Dunn, J.D. Hayler, G.R. Humphrey, J. Leazer, R.J. Linderman, K. Lorenz, J. Manley, B.A. Pearlman, A. Wells, A. Zaks, T.Y. Zhang, Green Chem. 9, 411 (2007)CrossRefGoogle Scholar
  4. 4.
    N. Kanıskan, S. Kokten, I. Celik, Arkivoc 8, 198 (2012)Google Scholar
  5. 5.
    F.A. Bettelheim, J. March, Introduction to General, Organic and Biochemistry, 5th edn. (Sounders College Publishing, Fort Worth, 1998), p. 492Google Scholar
  6. 6.
    A. Graul, J. Castaner, Drugs Future 22, 956 (1997)CrossRefGoogle Scholar
  7. 7.
    A.A. Patchett, J. Med. Chem. 36, 2051 (1993)CrossRefGoogle Scholar
  8. 8.
    M. Gasparo, S. Whitebread, Regul. Pept. 59, 303 (1995)CrossRefGoogle Scholar
  9. 9.
    B. Yu, L.D. Tang, Y.L. Li, S.H. Song, X.L. Ji, M.S. Lin, C.F. Wu, Bioorg. Med. Chem. Lett. 22, 110 (2012)CrossRefGoogle Scholar
  10. 10.
    V.S. Ananthanarayanan, S. Tetreault, A.S. Jean, J. Med. Chem. 36, 1324 (1993)CrossRefGoogle Scholar
  11. 11.
    M. Colombo, S. Bossolo, A. Aramini, J. Comb. Chem. 11, 335 (2009)CrossRefGoogle Scholar
  12. 12.
    M.H. Sarvari, H. Sharghi, J. Org. Chem. 71, 6652 (2006)CrossRefGoogle Scholar
  13. 13.
    A.C. Shekhar, A.R. Kumar, G. Sathaiah, V.L. Paul, M. Sridhar, P.S. Rao, Tetrahedron Lett. 50, 7099 (2009)CrossRefGoogle Scholar
  14. 14.
    C.A.G.N. Montalbetti, V. Falque, Tetrahedron 61, 10827 (2005)CrossRefGoogle Scholar
  15. 15.
    X. Li, Z. Li, H. Deng, X. Zhou, Tetrahedron Lett. 54, 2212 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, G.Y. Zhang, Y. Li, Y.N. Zhang, S.Z. Zheng, Z.X. Zhou, S.J. An, Y.H. Jin, Heteroat. Chem. 24, 9 (2013)CrossRefGoogle Scholar
  17. 17.
    N. Kushwaha, R.K. Saini, S.K.S. Kushwaha, Int. J. Chem. Tech. Res. 3, 203 (2011)Google Scholar
  18. 18.
    K. Rehse, J. Kotthaus, L. Khadembashi, Arch. Pharm. Chem. Life Sci. 340, 27 (2009)CrossRefGoogle Scholar
  19. 19.
    L.J. Gooben, D.M. Ohlmann, P.P. Lange, Synthesis 1, 160 (2009)Google Scholar
  20. 20.
    R.C. Larock, Comprehensive Organic Transformations (VCH Publishers, Inc., NewYork, 1989), p. 972Google Scholar
  21. 21.
    Y.S. Klausner, M. Bodansky, Synthesis 9, 453 (1972)CrossRefGoogle Scholar
  22. 22.
    C.B. Curty, E.J. Roskamp, Tetrahedron Lett. 34, 5193 (1993)CrossRefGoogle Scholar
  23. 23.
    J.D. Wilson, H. Weingarten, Can. J. Chem. 48, 983 (1970)CrossRefGoogle Scholar
  24. 24.
    I.J. Levin, E. Turos, S.M. Weinred, Synth. Commun. 12, 989 (1982)CrossRefGoogle Scholar
  25. 25.
    U. Schmidt, M. Dietsche, Angew. Chem. Int. Ed. Engl. 21, 143 (1982)CrossRefGoogle Scholar
  26. 26.
    M. Thorsen, T.P. Anderson, U. Pedersen, B. Yde, S. Lawessons, Tetrahedron 41, 5633 (1985)CrossRefGoogle Scholar
  27. 27.
    M. Ueda, H. Olkawa, N. Kawaharasaki, Y. Imai, Bull. Chem. Soc. Jpn. 56, 2485 (1983)CrossRefGoogle Scholar
  28. 28.
    K. Takeda, I. Sawada, A. Suzuki, H. Ogura, Tetrahedron Lett. 24, 4451 (1983)CrossRefGoogle Scholar
  29. 29.
    S. Han, Y. Kim, Tetrahedron 60, 2447 (2004)CrossRefGoogle Scholar
  30. 30.
    K. Ishihara, S. Ohara, H. Yamamoto, J. Org. Chem. 61, 4196 (1996)CrossRefGoogle Scholar
  31. 31.
    K. Ishihara, S. Ohara, H. Yamamoto, Macromolecules 33, 3511 (2000)CrossRefGoogle Scholar
  32. 32.
    T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 8, 1431 (2006)CrossRefGoogle Scholar
  33. 33.
    K. Arnold, A.S. Batsanov, B. Davies, A. Whiting, Green Chem. 10, 124 (2008)CrossRefGoogle Scholar
  34. 34.
    S.W. Coghlan, R.L. Giles, J.A.K. Howard, L.G.F. Patrick, M.R. Probert, G.E. Smith, A. Whiting, J. Organomet. Chem. 690, 4784 (2005)CrossRefGoogle Scholar
  35. 35.
    R.M. Al Zoubi, O. Marion, D.G. Hall, Angew. Chem. Int. Ed. 47, 2876 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Biffi, L. De Martin, C. Ebert, L. Gardossi, P. Linda, J. Mol. Catal. B Enzym. 19–20, 135 (2002)CrossRefGoogle Scholar
  37. 37.
    M.V. Zakharova, F. Kleitz, F.G. Fontaine, Dalton Trans. 46, 3864 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Kumar, S. Sharma, K. Thakur, O.S. Nayal, V. Bhatt, M.S. Thakur, N. Kumar, B. Singh, U. Sharma, Asian. J. Org. Chem. 6, 342 (2017)Google Scholar
  39. 39.
    M. Tamura, D. Murase, K. Komura, Synthesis 47, 769 (2015)CrossRefGoogle Scholar
  40. 40.
    J.D. Oxley, T. Prozorov, J. Suslick, Am. Chem. Soc. 125, 11138 (2003)CrossRefGoogle Scholar
  41. 41.
    U. Kumar Sur, F. Marken, B.A. Coles, R.G. Compton, J. Dupont, Chem. Commun. 40, 2816 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Dupont, J. Spencer, Angew. Chem. Int. Ed. 43, 5296 (2004)CrossRefGoogle Scholar
  43. 43.
    R.P. Swatkoski, J.D. Holbrey, R.D. Rogers, Green Chem. 5, 361 (2003)CrossRefGoogle Scholar
  44. 44.
    J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)CrossRefGoogle Scholar
  45. 45.
    M.A. Philip, U. Natarajan, R. Nagarajan, Adv. Nano Res. 2, 121 (2014)CrossRefGoogle Scholar
  46. 46.
    P.A. Bozkurt, Ultrason. Sonochem. 35, 397 (2016)CrossRefGoogle Scholar
  47. 47.
    A. Abdolmalekia, Sh Mallakpoura, F. Azimic, Ultrason. Sonochem. 41, 27 (2018)CrossRefGoogle Scholar
  48. 48.
    A. Moghtada, R. Ashiri, Ultrason. Sonochem. 26, 293 (2015)CrossRefGoogle Scholar
  49. 49.
    A. Moghtada, R. Ashiri, Ultrason. Sonochem. 33(141), 141 (2016)CrossRefGoogle Scholar
  50. 50.
    R. Ashiri, A. Moghtada, Metall. Mater. Trans. B 45, 1979 (2014)CrossRefGoogle Scholar
  51. 51.
    R. Ashiri, A. Moghtada, A. Shahrouzianfar, Metall. Mater. Trans. B 46, 1912 (2015)CrossRefGoogle Scholar
  52. 52.
    T. Sasaki, M. Tada, C. Zhong, T. Kume, Y. Iwasawa, J. Mol. Catal. A. 279, 200 (2008)CrossRefGoogle Scholar
  53. 53.
    V.K. Dasa, R.R. Devib, A.J. Thakura, Appl. Catal. A. Gen. 456, 118 (2013)CrossRefGoogle Scholar
  54. 54.
    Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, Tetrahedron 69, 8368 (2013)CrossRefGoogle Scholar
  55. 55.
    A.A. Ellsworth, C.L. Magyar, G.E. Hubbell, C.C. Theisen, D. Holmes, R.A. Mosey, Tetrahedron 72, 6380 (2016)CrossRefGoogle Scholar
  56. 56.
    D.N. Reddy, E.N. Prabhakaran, J. Org. Chem. 76, 680 (2011)CrossRefGoogle Scholar
  57. 57.
    H.F. Kung, R. Kasliwal, S. Pan, M. Kung, R.H. Mach, Y. Guo, J. Med. Chem. 31, 1039 (1988)CrossRefGoogle Scholar
  58. 58.
    A. Lewanowicza, J. Lipiński, R. Siedleckab, J. Skarżewskib, F. Baertc, Tetrahedron 54, 6571 (1998)CrossRefGoogle Scholar
  59. 59.
    T. Kumar Achar, P. Mal, Adv. Synth. Catal. 357, 3977 (2015)CrossRefGoogle Scholar
  60. 60.
    R. Ningegowda, S. Bhaskaran, A.M. Sajith, C. Aswathanarayanappa, M.S.A. Padusha, N.S. Shivananju, B.S. Priya, Aust. J. Chem. 70, 44 (2017)CrossRefGoogle Scholar
  61. 61.
    Y. Ito, S. Arimoto, J. Phys. Org. Chem. 16, 849 (2003)CrossRefGoogle Scholar
  62. 62.
    E.D. Funder, J.B. Trads, K.V. Gothelf, Org. Biomol. Chem. 13, 185 (2015)CrossRefGoogle Scholar
  63. 63.
    C.A. Goodman, J.B. Eagles, L. Rudahindwa, C.G. Hamaker, ShR Hitchcock, Synth. Commun. 43, 2155 (2013)CrossRefGoogle Scholar
  64. 64.
    X. Wang, Q. Yang, F. Liu, Q. You, Synth. Commun. 38, 1028 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Masoumeh Ahmadi
    • 1
  • Leila Moradi
    • 1
    Email author
  • Masoud Sadeghzadeh
    • 2
  1. 1.Department of Organic Chemistry, Faculty of ChemisryUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Radiation Application Research SchoolNSTRITehranIslamic Republic of Iran

Personalised recommendations