Research on Chemical Intermediates

, Volume 44, Issue 12, pp 7519–7538 | Cite as

γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel superparamagnetic nanocatalyst promoted green synthesis of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives

  • Hadi Mohammadi
  • Hamid Reza ShaterianEmail author


Grafting of 4-(sulfoamino)butanoic acid on superparamagnetic γ-Fe2O3@SiO2 nanoparticles afforded γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid as a novel heterogeneous nanocatalyst, which was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, field emission scanning electron microscopy, and thermal gravimetric analysis. In this research, we report a convenient and one-pot efficient direct protocol for the pseudo four-component preparation of 5-(aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione derivatives via cascade condensation reaction of 1,3-indandione and isatins with various aromatic amine in the presence of the catalytic amount of γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid under green conditions in aqueous media. This procedure offers several advantages such as: very easy reaction conditions, simple work-up, or purification, excellent yields, high purity of the desired product, atom economy, and short reaction times. The superparamagnetic catalyst is magnetically separable and retained chemical stability after recycling for at least five consecutive runs without detectable activity loss.

Graphical abstract


γ-Fe2O3@SiO2@4-(sulfoamino)butanoic acid Superparamagnetic nanocatalyst 5-(Aryl)-5H-spiro[diindeno[1,2-b:2′,1′-e]pyridine-11,3′-indoline]-2′,10,12-trione Multi-component reactions 



We are grateful for the financial support from the Research Council of University of Sistan and Baluchestan.

Supplementary material

11164_2018_3571_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1409 kb)


  1. 1.
    L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Chem. Rev. 116, 10473 (2016)CrossRefGoogle Scholar
  2. 2.
    A.S. Paulus, R. Heinzler, H.W. Ooi, M. Franzreb, ACS Appl. Mater. Interfaces 7, 14279 (2015)CrossRefGoogle Scholar
  3. 3.
    A.P. Tiwari, S.J. Ghosh, S.H. Pawar, Anal. Methods 7, 10109 (2015)CrossRefGoogle Scholar
  4. 4.
    Q. Luo, X. Xiao, X. Dai, Z. Duan, D. Pan, H. Zhu, X. Li, L. Sun, K. Luo, Q. Gong, ACS Appl. Mater. Interfaces. 10, 1575 (2018)CrossRefGoogle Scholar
  5. 5.
    S.V. Sokolov, E. Kätelhön, R.G. Compton, J. Phys. Chem. C 119, 25093 (2015)CrossRefGoogle Scholar
  6. 6.
    M.F. Silva, A.A.W. Hechenleitner, J.M. Irache, A.J.A. de Oliveira, E.A. Gómez Pineda, Mater. Res. 18, 1400 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Yao, J. Jing, F. Liang, Z. Yang, Macromolecules 49, 9618 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Taghvimi, H. Hamishehkar, J. Chromatogr. B 1041–1042, 113 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)CrossRefGoogle Scholar
  10. 10.
    R.K. Sharma, M. Yadav, M.B. Gawande, in ACS Symp. Ser. 2016, p. 1Google Scholar
  11. 11.
    N. Pal, A. Bhaumik, RSC Adv. 5, 24363 (2015)CrossRefGoogle Scholar
  12. 12.
    N. Taheri, F. Heidarizadeh, A. Kiasat, J. Magn. Magn. Mater. 428, 481 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Abdollahi-Alibeik, A. Rezaeipoor-Anari, J. Magn. Magn. Mater. 398, 205 (2016)CrossRefGoogle Scholar
  14. 14.
    W. Wu, C.Z. Jiang, V.A.L. Roy, Nanoscale 8, 9421 (2016)Google Scholar
  15. 15.
    P. Saravanan, K. Jayamoorthy, S. Anandakumar, J. Lumin. 178, 241 (2016)CrossRefGoogle Scholar
  16. 16.
    D.G. Wang, C. Deraedt, J. Ruiz, D. Astruc, Acc. Chem. Res. 48, 1871 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Zhang, Y.H. Liu, Z.R. Shang, H.C. Hu, Z.H. Zhang, Catal. Commun. 88, 39 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Zhang, P. Liu, Y.H. Liu, Z.R. Shang, H.C. Hu, Z.H. Zhang, RSC Adv. 6, 106160 (2016)CrossRefGoogle Scholar
  19. 19.
    K.M. Ho, P. Li, Langmuir 24, 1801 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Azizi, A. Heydari, RSC Adv. 4, 8812 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Tsuji, J. Injuk, R.V. Grieken, X-Ray Spectrometry: Recent Technological Advances (Wiley, Hoboken, 2005)Google Scholar
  22. 22.
    D.R. Chandam, A.G. Mulik, D.R. Patil, A.P. Patravale, D.R. Kumbhar, M.B. Deshmukh, J. Mol. Liq. 219, 573 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Sindhu, H. Singh, M. Khurana, Synth. Commun. 45, 202 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Ghahremanzadeh, G. Imani Shakibaei, S. Ahadi, A. Bazgir, J. Comb. Chem. 12, 191 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations