Research on Chemical Intermediates

, Volume 44, Issue 11, pp 7159–7171 | Cite as

A novel electrostatic self-assembly method for preparation of TiO2@BiOI photocatalyst

  • Ying Chen
  • Jing Li
  • Yu-ning Liang


In this work, TiO2@BiOI photocatalyst was successfully fabricated by a novel electrostatic self-assembly method. A series of characterizations were employed to characterize the as-prepared photocatalyst. The potential application and mechanism of this photocatalyst were evaluated and discussed by photocatalytic degradation of RhB. The results showed that the TiO2@BiOI photocatalyst exhibited more excellent photocatalytic performance than pure TiO2. The remarkable enhancement in the photocatalytic activities of the TiO2@BiOI photocatalyst could be attributed to the effective electron–hole separations at the interfaces of the two semiconductors, which facilitated the transfer of the photoinduced carriers. In addition, relative large specific surface area, and appropriate energy band gap have great contribution to the enhancement of photocatalytic performance.

Graphical Abstract

In this paper, a new type of photocatalyst was prepared by electrostatic self-assembly method. The photocatalytic performance of the sample was evaluated by various characterization and degradation of RhB. The experimental results show that the photocatalytic activity of the sample is obviously improved.


Electrostatic self-assembly method TiO2@BiOI Photocatalytic performance 



This work was supported by the National Natural Science Foundation of China (51146008).


  1. 1.
    M. Choi, D. Kim, B. Rungtaweevoranit, C.A. Trickett, J.T.D. Barmanbek, A.S. Alshammari, P. Yang, O.M. Yaghi, J. Am. Chem. Soc. 139, 356 (2016)CrossRefGoogle Scholar
  2. 2.
    P.Z.S. Yu, Nano Res. 9, 1689 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136, 8839 (2014)CrossRefGoogle Scholar
  4. 4.
    I. Shown, H. Hsu, Y. Chang, C. Lin, P.K. Roy, A. Ganguly, C. Wang, J. Chang, C. Wu, L. Chen, K. Chen, Nano Lett. 14, 6097 (2014)CrossRefGoogle Scholar
  5. 5.
    Q. Zhao, S. Wu, C. Wang, C. Zhao, Yang, Res. Chem. Intermed. 42, 5479 (2016)Google Scholar
  6. 6.
    N. Zhang, L. Li, G. Li, Res. Chem. Intermed. 43, 5011 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Li, J. Shi, G. Zhang, Y. Fang, M. Anpo, X. Wang, Res. Chem. Intermed. 43, 5137 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Martha, P.C. Sahoo, K.M. Parida, RSC ADV. 5(76), 61535 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Dumrongrojthanath, A. Phuruangrat, P. Junploy, S. Thongtem, T. Thongtem, Res. Chem. Intermed. 42, 1651 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, X. Wang, P. Xia, X. Wang, J. Huang, J. Chen, B. Louangsouphom, J. Zhao, Res. Chem. Intermed. 42(6), 5541 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Verma, S.K. Samanta, Res. Chem. Intermed. 43, 6317 (2017)CrossRefGoogle Scholar
  12. 12.
    R. Sharma, M. Khanuja, S.S. Islam, U. Singhal, A. Varma, Res. Chem. Intermed. 43, 5345 (2017)CrossRefGoogle Scholar
  13. 13.
    N. Qin, K. Jing, R. Chen, J. Xiong, R. Liang, Z. Li, L. Wu, Res. Chem. Intermed. 43, 5217 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Wang, Z. Li, Res. Chem. Intermed. 43, 5169 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Chen, X. Hua, C. Mao, H. Niu, J. Song, Res. Chem. Intermed. 44, 2251 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Li, Y. Xu, W. Tu, G. Chen, R. Xu, Green Chem. 12, 2763 (2016)Google Scholar
  17. 17.
    H. Zhang, D. Liu, S. Ren, H. Zhang, Res. Chem. Intermed. 43(3), 1529 (2017)CrossRefGoogle Scholar
  18. 18.
    S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Res. Chem. Intermed. 44(5), 3115 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Ren, P. Koshy, F. Cao, C.C. Sorrell, Inorg. Chem. 55(16), 8071 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Liu, T. Lv, C. Zhu, X. Su, Z. Zhu, J. Mol. Catal. A-Chem. 396, 136 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Weng, Q. Zeng, Y. Zhang, F. Dong, Z. Wu, ACS Sustain. Chem. Eng. 4, 4314 (2016)CrossRefGoogle Scholar
  22. 22.
    Z. Jiang, C. Zhu, W. Wan, K. Qian, J. Xie, J. Mater Chem. A 4(5), 1806 (2016)CrossRefGoogle Scholar
  23. 23.
    J.M. Montoya-Zamora, A.M.N. la Cruz, E.L.P.C. Llar, Res. Chem. Intermed. 43, 2545 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, S. Park, J. Solid State Chem. 253, 421 (2017)CrossRefGoogle Scholar
  25. 25.
    D. Kandi, S. Martha, A. Thirumurugan, K.M. Parida, J. Phys. Chem. C 121(9), 4834 (2017)CrossRefGoogle Scholar
  26. 26.
    Z. Xu, W. Hao, Q. Zhang, Z. Fu, H. Feng, Y. Du, S. Dou, J. Phys. Chem. C 120, 8589 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Li, L. Yu, Zhang. Nanoscale 6, 8473 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Bhachu, S.J.A. Moniz, S. Sathasivam, D.O. Scanlon, A. Walsh, S.M. Bawaked, M. Mokhtar, A.Y. Obaid, I.P. Parkin, J. Tang, C.J. Carmalt, Chem. Sci. 7, 4832 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Liu, L. Ruan, S.B. Adelojuc, Y. Wu, Dalton Trans. 43, 1706 (2014)CrossRefGoogle Scholar
  30. 30.
    W.A. Wang, Daoud 324, 532 (2015)Google Scholar
  31. 31.
    R. Fu, X. Zeng, L. Ma, S. Gao, Q. Wang, Z. Wang, B. Huang, Y. Dai, J. Lu, J. Power Sources 312, 12 (2016)CrossRefGoogle Scholar
  32. 32.
    C. Liao, Z. Ma, G. Dong, J. Qiu, Appl. Surf. Sci. 314, 481 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Yan, L. Li, G. Li, Res. Chem. Intermed. 37, 297 (2011)CrossRefGoogle Scholar
  34. 34.
    C. Xue, T. Zhang, S. Ding, J. Wei, G. Yang, ACS Appl. Mater. Interfaces 9, 16091 (2017)CrossRefGoogle Scholar
  35. 35.
    W. Li, Y. Tian, H. Li, C. Zhao, B. Zhang, H. Zhang, W. Geng, Q. Zhang, Appl. Catal. A-Gen. 516, 81 (2016)CrossRefGoogle Scholar
  36. 36.
    F. Xu, G. Cheng, S. Song, Y. Wei, R. Chen, ACS Sustain. Chem. Eng. 4, 7013 (2016)CrossRefGoogle Scholar
  37. 37.
    H. Liu, G. Xu, J. Wang, J. Lv, Z. Zheng, Y. Wu, Electrochim. Acta 130, 213 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Shen, X. Yu, W. Lin, Y. Zhu, Y. Zhang, Appl. Surf. Sci. 399, 67 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Guerrero, A. Altube, E. García-Lecina, E. Rossinyol, M.D. Baró, E. Pellicer, J. Sort, ACS Appl. Mater. Interfaces 6(16), 13994 (2014)CrossRefGoogle Scholar
  40. 40.
    X. Tu, S. Qian, L. Chen, L. Qu, J. Mater. Sci. 50(12), 4312 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Oil and Natural Gas Processing, School of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqingPeople’s Republic of China

Personalised recommendations