Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 11, pp 6861–6875 | Cite as

Homogeneous distribution of nanosized ZnO in montmorillonite clay sheets for the photocatalytic enhancement in degradation of Rhodamine B

  • Phetladda Pannak
  • Apisit Songsasen
  • Weerapat Foytong
  • Pinit Kidkhunthod
  • Weekit Sirisaksoontorn
Article
  • 154 Downloads

Abstract

Nanosized ZnO intercalated in montmorillonite (ZnO-MMT) was successfully prepared by two-step preparation: ion exchange and thermal treatment. It was found that the structure of the obtained composite was arranged in the house-of-cards structure with the homogeneous distribution of nanosized ZnO in the clay sheets, according to the XRD, SEM–EDX, TEM, XAS analyses. Importantly, as-obtained ZnO-MMT showed the small domains of crystalline ZnO with less particle aggregation. The particle size of ZnO defined by TEM was in the range of 1.8–3.0 nm. In addition, XAS results suggested the presence of short-range structural order in wurtzite ZnO crystalline. The photocatalytic activity of ZnO-MMT over Rhodamine B solution was remarkably enhanced with the normalized quantity of 8.4 mmol g−1 compared with a physical mixture of ZnO and montmorillonite (ZnO@MMT) (1.8 mmol g−1) and commercial ZnO (1.1 mmol g−1). This photocatalytic enhancement was attributed to the strong synergistic interaction of nanosized ZnO that was homogeneously embedded in the montmorillonite structure.

Keywords

Montmorillonite Nanosized ZnO Intercalation Photocatalyst 

Notes

Acknowledgements

This research is supported by the Department of Chemistry, Faculty of Science, Kasetsart University, and the Science Achievement Scholarship of Thailand (SAST). The XAS experiment was supported by the Synchrotron Light Research Institute (Public Organization). We gratefully acknowledge the financial support from the Kasetsart University Research and Development Institute (KURDI) (Grant No. 33.61).

Supplementary material

11164_2018_3526_MOESM1_ESM.docx (26.3 mb)
Supplementary material 1 (DOCX 26958 kb)

References

  1. 1.
    L. Chmielarz, P. Kuśtrowski, R. Dziembaj, P. Cool, E.F. Vansant, Catal. Today 119, 181 (2007)CrossRefGoogle Scholar
  2. 2.
    F. Kooli, Microporous Mesoporous Mater. 184, 184 (2014)CrossRefGoogle Scholar
  3. 3.
    F. Kooli, Y. Liu, K. Hbaieb, R. Al-Faze, Microporous Mesoporous Mater. 226, 482 (2016)CrossRefGoogle Scholar
  4. 4.
    A.Q. Zhang, R.B. Zhang, N. Zhang, S.G. Hong, M. Zhang, Kinet. Catal. 51, 529 (2010)CrossRefGoogle Scholar
  5. 5.
    Z. Ding, J.T. Kloprogge, R.L. Frost, G.Q. Lu, H.Y. Zhu, J. Porous Mater. 8, 273 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Fathinia, A.R. Khataee, M. Zarei, S. Aber, J. Mol. Catal. A Chem. 333, 73 (2010)CrossRefGoogle Scholar
  7. 7.
    D. Bahnemann, Sol. Energy 77, 445 (2004)CrossRefGoogle Scholar
  8. 8.
    C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, J. Chem. Technol. Biotechnol. 83, 769 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Khataee, M. Kiransan, S. Karaca, S. Arefi-Oskoui, Turk. J. Chem. 40, 546 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Meshram, R. Limaye, S. Ghodke, S. Nigam, S. Sonawane, R. Chikate, Chem. Eng. J. 172, 1008 (2011)CrossRefGoogle Scholar
  11. 11.
    G.K. Zhang, X.M. Ding, F.S. He, X.Y. Yu, J. Zhou, Y.J. Hu, J.W. Xie, Langmuir 24, 1026 (2008)CrossRefGoogle Scholar
  12. 12.
    G.K. Zhang, X.M. Ding, Y.J. Hu, B.B. Huang, X.Y. Zhang, X.Y. Qin, J. Zhou, J.W. Xie, J. Phys. Chem. C 112, 17994 (2008)CrossRefGoogle Scholar
  13. 13.
    O. Kozák, P. Praus, K. Koci, M. Klementova, J. Colloid Interface Sci. 352, 244 (2010)CrossRefGoogle Scholar
  14. 14.
    J.R. Xiao, T.Y. Peng, D.N. Ke, L. Zan, Z.H. Peng, Phys. Chem. Miner. 34, 275 (2007)CrossRefGoogle Scholar
  15. 15.
    W.N. Xing, L. Ni, P.W. Huo, Z.Y. Lu, X.L. Liu, Y.Y. Luo, Y.S. Yan, Appl. Surf. Sci. 259, 698 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Daneshvar, M.H. Rasoulifard, A.R. Khataee, F. Hosseinzadeh, J. Hazard. Mater. 143, 95 (2007)CrossRefGoogle Scholar
  17. 17.
    J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, J. Hazard. Mater. 172, 1520 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Liu, G. Zhang, Phys. Chem. Chem. Phys. 16, 8178 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Guo, L. Li, Y. Li, Z. Li, X. Wang, G. Wang, J. Radioanal. Nucl. Chem. 310, 883 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Guo, W. Yu, J. Chen, X. Wang, B. Gao, G. Wang, Ultrason. Sonochem. 34, 831 (2017)CrossRefGoogle Scholar
  21. 21.
    N. Gu, J. Gao, K. Wang, X. Yang, W. Dong, Water Air Soil Pollut. 226, 136 (2015)CrossRefGoogle Scholar
  22. 22.
    J.D. Ye, X.B. Li, J.G. Hong, J.Q. Chen, Q.H. Fan, Mater. Sci. Semicond. Process. 39, 17 (2015)CrossRefGoogle Scholar
  23. 23.
    I. Fatimah, S. Wang, D. Wulandari, Appl. Clay Sci. 53, 553 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Khataee, M. Kiransan, S. Karaca, M. Sheydaei, J. Taiwan Inst. Chem. Eng. 74, 196 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Karaca, M. Kiransan, S. Karaca, A. Khataee, A. Karimi, Ultrason. Sonochem. 31, 250 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Khumchoo, N. Khaorapapong, A. Ontam, S. Intachai, M. Ogawa, Eur. J. Inorg. Chem. 2016, 3157 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Kiransan, A. Khataee, S. Karaca, M. Sheydaei, Spectrochim. Acta Part A 140, 465 (2015)CrossRefGoogle Scholar
  28. 28.
    S.G. Hur, T.W. Kim, S.J. Hwang, S.H. Hwang, J.H. Yang, J.H. Choy, J. Phys. Chem. B 110, 1599 (2006)CrossRefGoogle Scholar
  29. 29.
    W. Klysubun, P. Kidkhunthod, P. Tarawarakarn, P. Sombunchoo, C. Kongmark, S. Limpijumnong, S. Rujirawat, R. Yimnirun, G. Tumcharern, K. Faungnawakij. J. Synchrotron Radiat. 24, 707 (2017)CrossRefGoogle Scholar
  30. 30.
    P. Kidkhunthod, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035007 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Newville, J. Synchrotron Radiat. 8, 96 (2001)CrossRefGoogle Scholar
  32. 32.
    M. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)CrossRefGoogle Scholar
  33. 33.
    A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, M. Rostami, Corros. Sci. 94, 207 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Li, W. Qin, P. Zhang, L. Wang, M. Lan, P. Shi, Opt. Mater. Express 7, 329 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Ashraf, S. Riaz, Z.N. Kayani, S. Naseem, Mater. Today Proc. 2, 5468 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Németh, I. Dékány, K. Süvegh, T. Marek, Z. Klencsár, A. Vértes, J.H. Fendler, Langmuir 19, 3762 (2003)CrossRefGoogle Scholar
  37. 37.
    Y. Chen, G. Yu, F. Li, J. Wei, Appl. Clay Sci. 88–89, 163 (2014)CrossRefGoogle Scholar
  38. 38.
    N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.K. Kim, J. van de Lagemaat, K.D. Benkstein, A.J. Frank, Langmuir 20, 4246 (2004)CrossRefGoogle Scholar
  39. 39.
    J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S.J. Hwang, J. Am. Chem. Soc. 133, 14998 (2011)CrossRefGoogle Scholar
  40. 40.
    T.Y. Wibowo, A.Z. Abdullah, R. Zakaria, J. Appl. Sci. 11, 3619 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Hassani, A. Khataee, S. Karaca, C. Karaca, P. Gholami, Ultrason. Sonochem. 35, 251 (2017)CrossRefGoogle Scholar
  42. 42.
    K. Parida, L. Mohapatra, N. Baliarsingh, J. Phys. Chem. C 116, 22417 (2012)CrossRefGoogle Scholar
  43. 43.
    S.G. Kumar, K.S.R.K. Rao, RSC Adv. 5, 3306 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceKasetsart UniversityChatuchak, BangkokThailand
  2. 2.Synchrotron Light Research Institute (Public Organization)Nakhon RatchasimaThailand

Personalised recommendations