Dinitrophenylhydrazine: β-cyclodextrin inclusion complex as a novel fluorescent chemosensor probe for Ce4+

Article
  • 4 Downloads

Abstract

An inclusion complex of 2,4-dinitrophenyl hydrazine (DNPH) with β-cyclodextrin (β-CD) was prepared and investigated using UV–visible and fluorescence spectral techniques in liquid states, FTIR and NMR techniques in solid state, and molecular docking techniques in virtual states. The binding constants for the formation of 1:1 DNPH: β-CD inclusion complex are estimated by UV–visible and fluorescence spectral techniques. To study the preferred orientation of guest molecules into the host, molecular simulation studies are used. Results of computational studies, semi-empirical analysis and experimental investigations correlate well with each other. The chemosensory power of DNPH: β-CD complex was investigated thoroughly for various metal cations and we found the emission of a complex showed a drastic increase in the intensity for Ce4+. Competition experiments of DNPH: β-CD complex with Ce4+ in the presence of other metal ions showed that no significant variation was found in the fluorescence intensity of DNPH:-CD complex upon adding all other cations. The linearity range, LOD and LOQ are determined from the selectivity and sensitivity studies for Ce4+. Our result suggests that the DNPH: β-CD inclusion complex would be promising material for developing a solid state sensory device for sensing Ce4+.

Keywords

2,4-Dinitrophenyl hydrazine Chemosensor Β-cyclodextrin Fluorescence enhancement Cerium ion 

References

  1. 1.
    C.F. Allen, Org. Synth. Coll. 2, 228 (1943)Google Scholar
  2. 2.
    V. Chis, S. Filip, V. Miclaus, V. Pirnau, A. Pirnau, M. Vasilescu, J. Mol. Struct. 744, 363 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Kosalec, S. Bakmaz, S. Pepeljnjak, S. Vladimir Knezevic, Acta Pharm. 54, 65 (2004)Google Scholar
  4. 4.
    S. Gupta, R.C. Husser, R.S. Geske, S.E. Welty, C. Smith, Toxicol. Sci. 54, 203 (2000)CrossRefGoogle Scholar
  5. 5.
    D. Udhayakumaria, S. Velmathia, Y.-M. Sungb, S.P. Wub, Sens. Actuators, B 198, 285 (2014)CrossRefGoogle Scholar
  6. 6.
    S.S. Kanolkar, V.T. Walke, Int. J. Pharm. Pharm. Sci. 6, 0975 (2014)Google Scholar
  7. 7.
    K. Sowjanya, J.C. Thejaswini, B.M. Gurupadayya, M.I. Priya, Der Pharmacia Lettre. 3, 47 (2011)Google Scholar
  8. 8.
    E.G. Anthon, M.D. Barrett, J. Sci. Food Agric. 83, 1210 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Dhrubajyoti Majumdar, Chem. Cheml. Sci. 5, 749 (2015)Google Scholar
  10. 10.
    S.M. Siddagangappa, S.M. Mayanna, F. Pushpanadan, Anti. Corros. Method M. 23, 11 (1976)CrossRefGoogle Scholar
  11. 11.
    Y.-L. Lin, P.-Y. Wang, L.-L. Hsieh, K.H. Ku, Y.T. Yeh, C.H. Wu, J. Chromatogr. A 1216, 6377 (2009)CrossRefGoogle Scholar
  12. 12.
    E. Floor, M.G. Wetzel, J. Neurochem. 70, 268 (1998)CrossRefGoogle Scholar
  13. 13.
    F. Lipari, S. Swarin, Environ. Sci. Technol. 19, 70 (1985)CrossRefGoogle Scholar
  14. 14.
    S. Jitjaicham, P. Kampalanonwat, P. Supaphol, Express Polym. Lett. 10, 832 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Szejtli, Chem. Rev. 98, 1743 (1998)CrossRefGoogle Scholar
  16. 16.
    M.V. Rekharsky, Y. Inoue, Chem. Rev. 98, 1875 (1998)CrossRefGoogle Scholar
  17. 17.
    T. Loftsson, M.E. Brewster, J. Pharm. Sci. 101, 3019 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Hapiot, S. Tilloy, E. Monflier, Chem. Rev. 106, 767 (2006)CrossRefGoogle Scholar
  19. 19.
    P. Brocos, N. Diaz-Vergara, X. Banquy, S. Perez-Casas, M. Costas, A. Pineiro, J. Phys. Chem. B. 39, 12455 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Kristmundsdottir, T. Loftsson, W.P. Holbrook, Int. J. Pharm. 139, 63 (1996)CrossRefGoogle Scholar
  21. 21.
    H. Kublik, T.K. Bock, H. Schreier, B.W. Muller, Eur. J. Pharm. Biopharm. 42, 320 (1996)Google Scholar
  22. 22.
    T. Loftsson, E. Stefansson, Drug Dev. Ind. Pharm. 23, 473 (1997)CrossRefGoogle Scholar
  23. 23.
    H. Dome, Eur. J. Pharm. Biopharm. 39, 133 (1993)Google Scholar
  24. 24.
    P. Jarho, A. Urtti, D.W. Pate, P. Suhonen, T. Jarvinen, Int. J. Pharm. 137, 209 (1996)CrossRefGoogle Scholar
  25. 25.
    E. Fenyvesi, M. Vikmon, L. Szente, Crit. Rev. Food Sci. Nutr. 56, 1981 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Wang, Y. Cao, B. Sun, C. Wang, Food Chem. 127, 1680 (2011)CrossRefGoogle Scholar
  27. 27.
    G. Astray, C.G. Barreiro, J.C. Mejuto, R.R. Otero, J. Simal Gandara Food Hydrocoll. 23, 1631 (2009)CrossRefGoogle Scholar
  28. 28.
    V.A. Marcolino, G.M. Zanin, L.R. Durrant, M.D. Benassi, G. Matioli, J. Agric. Food Chem. 59, 3348 (2011)CrossRefGoogle Scholar
  29. 29.
    L. Bardi, A. Mattei, S. Steffan, M. Marzona, Enzyme Microb. Technol. 27, 709 (2000)CrossRefGoogle Scholar
  30. 30.
    D. Arockia Jency, M. Umadevi, G.V. Sathe, J. Raman Spectrosc. 46, 377 (2015)CrossRefGoogle Scholar
  31. 31.
    B.J. Reid, K.T. Jhones, PCT Int Appl 54, 727 (1999)Google Scholar
  32. 32.
    A.R. Hedges, Chem. Rev. 98, 2035 (1998)CrossRefGoogle Scholar
  33. 33.
    J. Sumaoka, W. Chen, Y. Kitamura, T. Tomita, J. Yoshida, M. Komiyama, J. Alloys Compd. 408, 391 (2006)CrossRefGoogle Scholar
  34. 34.
    I.D. Nickson, C. Boxall, A. Jackson, G.O.H. Whillock, I.O.P. Conf, Ser. Mater. Sci. 9, 1 (2010)Google Scholar
  35. 35.
    H.J. Vieira, O. Fatibello, Quim. Nova 28, 797 (2005)CrossRefGoogle Scholar
  36. 36.
    W.W. Monafo, S.N. Tandon, V.H. Ayvazian, J. Tuchschmidt, A.M. Skinner, F. Deitz, Surgery 80, 465 (1976)Google Scholar
  37. 37.
    W.-X. Tang, P.-X. Gao, MRS Commun. 63, 11 (2016)Google Scholar
  38. 38.
    T. Yamaguchi, N. Ikeda, H. Hattori, K. Tanabe, J. Catal. 67, 324 (1981)CrossRefGoogle Scholar
  39. 39.
    V.D. Kosynki, A.A. Arzgatkina, E.N. Ivanov, M.G. Chtoutsa, A.I. Grabk, A.V. Kardapolov, N.A. Sysina, J. Alloys Compd. 303, 421 (2000)CrossRefGoogle Scholar
  40. 40.
    M. Melchionna, P. Fornasiero, Mater. Today 17, 349 (2014)CrossRefGoogle Scholar
  41. 41.
    A.N. Shmyreva, A.V. Borisov, N.V. Maksimchuk, Nanotechnol. Russ. 5, 5 (2010)CrossRefGoogle Scholar
  42. 42.
    J.K. Kar, R. Stevens, C.R. Bowen, Adv. Appl. Ceram. 106, 175 (2007)CrossRefGoogle Scholar
  43. 43.
    K. Otsuka, M. Hatano, A. Morikawa, J. Catal. 79, 493 (1983)CrossRefGoogle Scholar
  44. 44.
    B. Gantt, S. Hoque, R.D. Willis, K.M. Fahey, J.M. Delgado-Saborit, R.M. Harrison, G.B. Erdakos, P.V. Bhave, K.M. Zhang, K. Kovalcik, H.O.T. Pye, Environ. Sci. Technol. 48, 10607 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Sendilvelan, K. Bhaskar, S. Nallusamy, Rasayan j. chem. 10, 454 (2017)Google Scholar
  46. 46.
    M.S. Hirst, S.A. Karakoti, D.R. Tyler, N. Sriranganathan, S. Seal, M.C. Reilly, Small 24, 2848 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Gojova, J.-T. Lee, H.S. Jung, B. Guo, A.I. Barakat, I.M. Kennedy, Inhal Toxicol. 21, 123 (2009)CrossRefGoogle Scholar
  48. 48.
    S. Mittal, A.K. Pandey, BioMed Res. Int. 1 (2014)Google Scholar
  49. 49.
    A. Arya, A. Gangwar, S.K. Singh, M. Roy, M. Das, N.K. Sethy, K. Bhargava, Int. J. Nanomedicine. 11, 1159 (2016)Google Scholar
  50. 50.
    H.E. Liying, S.U. Yumin, J. Lanhong, S.H.I. Shikao, J. Rare Earths 33, 791 (2015)CrossRefGoogle Scholar
  51. 51.
    D. Bouzid, N. Belkhie, T. Aliouane, Mater. Sci. Eng. 28, 1 (2012)Google Scholar
  52. 52.
    J.-H. Maeng, S.-C. Choi, J. Opt Soc Korea. 16, 414 (2012)CrossRefGoogle Scholar
  53. 53.
    A. Nemmar, S. Al-Salam, S. Beegam, P. Yuvaraju, B.H. Ali, Int. J. Nanomedicine. 12, 2913 (2017)CrossRefGoogle Scholar
  54. 54.
    S.K. Nalabotu, M.B. Kolli, W.E. Triest, J.Y. Ma, N.D. Manne, A. Katta, H.S. Addagarla, K.M. Rice, E.R. Blough, Int. J. Nanomedicine. 6, 2327 (2011)CrossRefGoogle Scholar
  55. 55.
    C.V. Bhaskar, B. Shyla, G. Nagendrappa, Asian J. Biochem. Pharma Res. 1, 2231 (2011)Google Scholar
  56. 56.
    L. Van Tan, N. Thi Ngoc Le, Int. J. Chem. Eng. Appl. 2, 6 (2011)Google Scholar
  57. 57.
    K. Etesh Janghel, Y. Pervez, J. Sci. Ind. Res. 68, 940 (2009)Google Scholar
  58. 58.
    C.K. Rao, V.K. Reddy, T.S. Reddy, Talanta 41, 237 (1994)CrossRefGoogle Scholar
  59. 59.
    S. Jihad, A. Al Shaheen, College of Basic Education Researchers Journal. 8, 4 (2009)Google Scholar
  60. 60.
    M.M. Karim, S.H. Lee, Y.S. Kim, H.S. Bae, S.B. Hong, J. Fluoresc. 16, 1 (2006)CrossRefGoogle Scholar
  61. 61.
    M.A. Karimi, M.H. Mashhadizadeh, M. Mazloum-Ardakani, F. Rahavian, Am. J. Anal Chem. 2, 73 (2010)CrossRefGoogle Scholar
  62. 62.
    D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H.J. Wolfson, Nucl. Acids Res. 33, 363 (2005)CrossRefGoogle Scholar
  63. 63.
    M.L. Connolly, Science 221, 709 (1983)CrossRefGoogle Scholar
  64. 64.
    M.L. Connolly, J. Appl. Crystallogr. 16, 548 (1983)CrossRefGoogle Scholar
  65. 65.
    C. Zhang, G. Vasmatzis, J.L. Cornette, C. DeLisi, J. Mol. Biol. 267, 707 (1997)CrossRefGoogle Scholar
  66. 66.
    M.J. Frisch,, G.W. Trucks, H.B. Schlegel,, G.E. Scuseria,, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Ratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA (2003)Google Scholar
  67. 67.
    P. Job, Annali di Chimica Applicata. 9, 113 (1928)Google Scholar
  68. 68.
    H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71, 2703 (1949)CrossRefGoogle Scholar
  69. 69.
    X. Ge, J. He, Y. Yang, F. Qi, Z. Huang, L. Ruihua, L. Huang, X. Yao, J. Mol. Struct. 994, 163 (2011)CrossRefGoogle Scholar
  70. 70.
    D. Duhovny, R. Nussinov, H.J. Wolfson, in Proceedings of the 2’nd Workshop on Algorithms in Bioinformatics(WABI), Rome, Italy, Lecture Notes in Computer Science, ed. by Gusfield et al. vol. 2452 (Springer, Berlin, 2002), p. 185Google Scholar
  71. 71.
    K. Sivakumar, M. Nichodemus, K.R. Sankaran, Mol. Phys. 112, 1879 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceSri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University (SCSVMV University)Enathur, KanchipuramIndia
  2. 2.Department of ChemistryBannari Amman Institute of TechnologySathyamangalamIndia

Personalised recommendations