Functionalized MgO, CeO2 and ZnO nanoparticles with humic acid for the study of nitrate adsorption efficiency from water

  • Shahriar Mahdavi
  • Peyman Molodi
  • Mahboubeh Zarabi


In this study, the removal of nitrate using ZnO, MgO, and CeO2 nanoparticles (NPs) modified by humic acid from water was tested. Nanoparticles were modified by humic acid using the microwave-assisted technique and then modified ZnO (Zn–H), modified MgO (Mg–H), and modified CeO2 (Ce–H) were characterized through SEM, EDX, FTIR, and XRD analysis. Several important parameters influencing the removal of nitrate such as contact time, pH, adsorbent dosage and temperature were explored systematically by batch experiments. Isotherm studies were set up with the following optimum conditions: pH = 5, adsorbent concentration of 1 g L−1, 180 min and 25 °C. The results revealed that the adsorption were best fitted to pseudo-second order and simple Elovich kinetics models. Langmuir, Freundlich and linear adsorption models were fitted to describe adsorption isotherms and constants. The isotherm analysis indicated that the adsorption data can be represented by both Freundlich and linear isotherm models. The maximum adsorption capacity (qm) was obtained at 55.1, 74.2 and 75.8 mg g−1 for Zn–H, Ce–H, and Mg–H, respectively. The thermodynamic parameters such as free energy, enthalpy and entropy of adsorption were obtained. From the thermodynamic parameters, it is suggested that the adsorption of nitrate on modified NPs (MNPs) followed the exothermic and spontaneous processes. The obtained results showed that the MNPs were efficient adsorbents for removing nitrate from aqueous media.


Nitrate Modified nanoparticles Removal Humic acid 


  1. 1.
    G. Yu, Y. Lu, J. Guo, M. Patel, A. Bafana, X. Wang, et al., Adv. Compos. Mater. 1, 56 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Huang, Y. Cao, Q. Shao, X. Peng, Z. Guo, Ind. Eng. Chem. Res. 56, 10689 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Afkhami, H. Bagheri, T. Madrakian, Desalination 281, 151 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Kalaruban, P. Loganathan, W.G. Shim, J. Kandasamy, H.H. Ngo, S. Vigneswaran, Sci. Total Environ. 565(Supplement C), 503 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Zhao, S. Ge, L. Liu, Q. Shao, X. Mai, C.X. Zhao et al., Ind. Eng. Chem. Res. 57, 231 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Zhang, Y. Li, Q. Zhang, H. Wang, Cryst Eng Comm 15, 5986 (2013)CrossRefGoogle Scholar
  7. 7.
    B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song et al., Dalton Trans. 45, 15769 (2017)CrossRefGoogle Scholar
  8. 8.
    X.-J. Wen, C.-G. Niu, L. Zhang, G.-M. Zeng, Dalton Trans. 46, 4982 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Dashairya, M. Rout, P. Saha, Adv. Compos. Mater. 1, 135 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu et al., Polymer 128, 12 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Qu, G. Fan, D. Liu, Y. Gao, C. Xu, J. Zhong, et al., J. Alloys Compd. 743, 618 (2018)CrossRefGoogle Scholar
  12. 12.
    X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, G.-M. Zeng, Appl. Catal. B Environ. 221, 701 (2018)CrossRefGoogle Scholar
  13. 13.
    A.A. Babaei, A. Azari, R.R. Kalantary, B. Kakavandi, Water Sci. Technol. 72, 1988 (2015)CrossRefGoogle Scholar
  14. 14.
    Q. Hu, N. Chen, C. Feng, W. Hu, J. Zhang, H. Liu et al., J Taiwan Inst. Chem. Eng. 63, 216 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Ren, Y. Ye, J. Zhu, K. Hu, Y. Wang, Desalin. Water Treat. 57, 17430 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Ensie, S. Samad, Desalination 347, 1 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Mukherjee, S. De, J. Membr. Sci. 466, 281 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Cai, Y. Gao, Q. Sun, Z. Chen, M. Megharaj, R. Naidu, Chem. Eng. J. 244, 19 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Teimouri, N. Vahdatpoor, S. Habibollahi, H. Salavati, A.N. Chermahini, Int. J. Biol. Macromol. 93, 254 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Morghi, F. Abidar, A. Soudani, M. Zerbet, M. Chiban, H. Kabli et al., IJRES 2, 8 (2015)Google Scholar
  21. 21.
    P.K. Singh, S. Banerjee, A.L. Srivastava, Y.C. Sharma, RSC Adv. 5, 35365 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Sowmya, S. Meenakshi, Desalin. Water Treat 54, 1674 (2015)Google Scholar
  23. 23.
    F.S. Fateminia, C. Falamaki, Proc. Saf. Environ. Prot. 91, 304 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Keränen, T. Leiviskä, O. Hormi, J. Tanskanen, J Environ. Manag. 147, 46 (2015)CrossRefGoogle Scholar
  25. 25.
    J.Y. Kim, M. Balathanigaimani, H. Moon, Water Air Soil Pollut. 226, 1 (2015)Google Scholar
  26. 26.
    G. Nunell, M. Fernandez, P. Bonelli, A. Cukierman, J. Colloid Interface Sci. 440, 102 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Xiong, W. Wang, F. Tan, F. Luo, J. Chen, X. Qiao, J. Hazard. Mater. 299, 664 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Bhatnagar, E. Kumar, M. Sillanpää, Chem. Eng. J. 163, 317 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Jain, A. Bansiwal, R.B. Biniwale, S. Milmille, S. Das, S. Tiwari et al., J. Environ. Chem. Eng. 3, 2342 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Mahdavi, P. Molodi, M. Zarabi, Environ. Prog. Sustain. Energy (2018). Google Scholar
  31. 31.
    K. Yang, W. Wei, L. Qi, W. Wu, Q. Jing, D. Lin, RSC Adv. 86, 46122 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. An, K. Zhang, F. Wang, L. Lin, H. Guo, Desalination 281, 30 (2011)CrossRefGoogle Scholar
  33. 33.
    L.V. Antisari, S. Carbone, A. Gatti, G. Vianello, P. Nannipieri, Soil Biol. Biochem. 60, 87 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Balavi, S. Samadanian-Isfahani, M. Mehrabani-Zeinabad, M. Edrissi, Powder Technol. 249, 549 (2013)CrossRefGoogle Scholar
  35. 35.
    A.B. Albadarin, Z. Yang, C. Mangwandi, Y. Glocheux, G. Walker, M. Ahmad, Chem. Eng. Res. Des. 92, 1354 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Mustafa, P. Shahida, A. Naeem, B. Dilara, N. Rehana, Langmuir 18, 2254 (2002)CrossRefGoogle Scholar
  37. 37.
    D.L. Sparks, Environmental soil chemistry (Academic Press, Cambridge, 2003)Google Scholar
  38. 38.
    M. Keshvardoostchokami, S. Babaei, F. Piri, A. Zamani, Int. J. Biol. Macromol. 101, 922 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Mahdavi, N. Amini, H. Merrikhpour, D. Akhzari, Korean J. Chem. Eng. 34, 234 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Jalali, S. Mahdavi, F. Ranjbar, Environ. Earth Sci. 72, 1775 (2014)CrossRefGoogle Scholar
  41. 41.
    D.L. Sparks, A. Page, P. Helmke, R. Loeppert, P. Soltanpour, M. Tabatabai et al., Methods of soil analysis. Part 3-Chemical methods (Soil Science Society of America Inc., Madison, 1996)Google Scholar
  42. 42.
    L. De Marzi, A. Monaco, J. De Lapuente, D. Ramos, M. Borras, M. Di Gioacchino et al., Int. J. Mol. Sci. 14, 3065 (2013)CrossRefGoogle Scholar
  43. 43.
    S. Mahdavi, M. Jalali, A. Afkhami, J. Nanopart. Res. 14, 846 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Mahdavi, M. Jalali, A. Afkhami, Chem. Eng. Commun. 200, 448 (2013)CrossRefGoogle Scholar
  45. 45.
    L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun et al., J. Electrochem. Soc. 164, H1086 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Jalilpour, M. Fathalilou, Int. J. Phys. Sci. 7, 944 (2012)Google Scholar
  47. 47.
    S. Mahdavi, A. Afkhami, H. Merrikhpour, Clean Technol. Environ. Policy 17, 1645 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Afkhami, M. Saber-Tehrani, H. Bagheri, J Hazard. Mater. 181, 836 (2010)CrossRefGoogle Scholar
  49. 49.
    Q. Chen, D. Yin, S. Zhu, X. Hu, J. Colloid Interface Sci. 367, 241 (2012)CrossRefGoogle Scholar
  50. 50.
    F. Bozorgpour, H.F. Ramandi, P. Jafari, S. Samadi, S.S. Yazd, M. Aliabadi, Int. J. Biol. Macromol. 93, 557 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Balamurugan, L. Ashna, P.J. Parthiban, Nanotechnology 2014, 1 (2014)CrossRefGoogle Scholar
  52. 52.
    K.M. Joshi, V.S. Shrivastava, Appl. Nanosci. 1, 147 (2011)CrossRefGoogle Scholar
  53. 53.
    A. Teimouri, S.G. Nasab, N. Vahdatpoor, S. Habibollahi, H. Salavati, A.N. Chermahini, Int. J. Biol. Macromol. 93, 254 (2016)CrossRefGoogle Scholar
  54. 54.
    A. Karachalios, M. Wazne, J. Chem. Technol. Biotechnol. 88, 664 (2013)CrossRefGoogle Scholar
  55. 55.
    J.-F. Leduc, R. Leduc, H. Cabana, Adsorpt. Sci. Technol. 32, 557 (2014)CrossRefGoogle Scholar
  56. 56.
    N. Öztürk, T.E. Bektaş, J. Hazard. Mater. 112, 155 (2004)CrossRefGoogle Scholar
  57. 57.
    P. Ganesan, R. Kamaraj, S. Vasudevan, J. Taiwan Inst. Chem. Eng. 44, 808 (2013)CrossRefGoogle Scholar
  58. 58.
    S. Hamoudi, R. Saad, K. Belkacemi, Ind. Eng. Chem. Res. 46, 8806 (2007)CrossRefGoogle Scholar
  59. 59.
    A. Rezaee, H. Godini, S. Dehestani, A. Khavanin, J Environ. Health Sci. Eng. 5, 125 (2008)Google Scholar
  60. 60.
    A. Bhatnagar, M. Ji, Y.H. Choi, W. Jung, S.H. Lee, S.J. Kim et al., Sep. Sci. Technol. 43, 886 (2008)CrossRefGoogle Scholar
  61. 61.
    P. Mishra, R. Patel, J. Environ. Manag. 90, 519 (2009)CrossRefGoogle Scholar
  62. 62.
    M.L. Hassan, N.F. Kassem, A.H. Abd El-Kader, J. Appl. Polym. Sci. 117, 2205 (2010)CrossRefGoogle Scholar
  63. 63.
    H. Demiral, G. Gündüzoğlu, Bioresource Technol. 101, 1675 (2010)CrossRefGoogle Scholar
  64. 64.
    Y. Xi, M. Mallavarapu, R. Naidu, Appl. Clay Sci. 48, 92 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shahriar Mahdavi
    • 1
  • Peyman Molodi
    • 1
  • Mahboubeh Zarabi
    • 1
  1. 1.Department of Soil Science, Faculty of AgricultureMalayer UniversityMalayerIran

Personalised recommendations