Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3537–3548 | Cite as

Simple approach for the regioselective synthesis of a bis (β-aminoalcohol) derived from polyoxyethylene: first report of fast ring-opening of polyoxyethylene diglycidyl ethers with sodium amide

  • Saad Ghrab
  • Lotfi Aroua
  • Nejib Mekni
  • Mohamed Beji
Article
  • 27 Downloads

Abstract

An efficient oxirane ring opening of polyoxyethylene diglycidyl ethers with sodium amide has been achieved for the first time under catalyst-free conditions. This reaction is highly regioselective and affords the corresponding bis (β-aminoalcohols) polyoxyethylene in good yields as a mixture of regioisomers. Various other advantages are associated with this novel protocol, including short reaction time, no need for catalysts, and a simple workup procedure. Here, the wide scope and utility of this method is demonstrated, and the stereochemistry is discussed. The regioisomeric ratio is determined from binomial calculation based on 1H NMR data and is confirmed by GC–MS.

Graphical Abstract

Keywords

Polyoxyethylene diglycidyl ethers Sodium amide Oxirane ring opening Bis (β-aminoalcohol) 

Notes

Acknowledgements

This work is funded by the Tunisian Ministry of High Education and Scientific Research and Technology (LR99ES14). We acknowledge Mr. A. Senhoury for helpful discussions and technical assistance.

Supplementary material

11164_2018_3323_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3892 kb)

References

  1. 1.
    C. Bonini, G. Righi, Synthesis 3, 225 (1994)Google Scholar
  2. 2.
    S.K. Paknikar, J.G. Kirtane, Tetrahedron 39, 2323 (1983)CrossRefGoogle Scholar
  3. 3.
    J.G. Smith, Synthesis 8, 629 (1984)Google Scholar
  4. 4.
    D.J. Ager, I. Prakash, D.R. Schaad, Chem. Rev. 96, 835 (1996)CrossRefGoogle Scholar
  5. 5.
    I.M. Pastor, M. Yus, Curr. Org. Chem. 9, 1 (2005)CrossRefGoogle Scholar
  6. 6.
    V.A. Soloshonok, K. Izawa, Asymmetric Synthesis and Application of β-amino Acids, (ACS Symposium Series) (ACS, Washington, 2009)Google Scholar
  7. 7.
    A. K. Ghosh, G. Bilcer, G. Schiltz, Synthesis, 2203 (2001)Google Scholar
  8. 8.
    C. Clarkson, C.C. Musonda, K. Chibale, W.E. Campbell, P. Smith, Bioorg. Med. Chem. 11, 4417 (2003)CrossRefGoogle Scholar
  9. 9.
    C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. Int. Ed. 44, 3881 (2005)CrossRefGoogle Scholar
  10. 10.
    J.S. Carey, D. Laffan, C. Thomson, M.T. Williams, Org. Biomol. Chem. 4, 2337 (2006)CrossRefGoogle Scholar
  11. 11.
    H.I. Omar, Y. Odo, Y. Shigemitsu, T. Shimo, K. Somekawa, Tetrahedron 59, 8099 (2003)CrossRefGoogle Scholar
  12. 12.
    G.L. Lange, J.A. Otulakowski, J. Org. Chem. 47, 5093 (1982)CrossRefGoogle Scholar
  13. 13.
    M. Asaoka, K.S. Shima, H. Takei, Tetrahedron Lett. 28, 5669 (1987)CrossRefGoogle Scholar
  14. 14.
    E. Ruediger, A. Martel, N. Meanwell, C. Solomon, B. Turmel, Tetrahedron Lett. 45, 739 (2004)CrossRefGoogle Scholar
  15. 15.
    K.B. Lindasy, S.G. Pyne, Tetrahedron 60, 4173 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Zhu, L. Meng, Q. Zhang, L. Wei, Bioorg. Med. Chem. Lett. 16, 1854 (2006)CrossRefGoogle Scholar
  17. 17.
    W.J. Moore, F.A. Luzzzio, Tetrahedron Lett. 36, 6599 (1995)CrossRefGoogle Scholar
  18. 18.
    E.J. Corey, F. Zhang, Angew. Chem. Int. Ed. 38, 1931 (1999)CrossRefGoogle Scholar
  19. 19.
    C.W. Johannes, M.S. Visser, G.S. Weatherhead, A.H. Hoveyda, J. Am. Chem. Soc. 120, 8340 (1998)CrossRefGoogle Scholar
  20. 20.
    B.L. Chng, Ganesan. Bioorg. Med. Chem. Lett. 7, 1511 (1997)CrossRefGoogle Scholar
  21. 21.
    T.V. Lukina, S.I. Sviridov, S.V. Shorshnev, G.G. Aleksandrovb, A.E. Stepanova, Tetrahedron Lett. 47, 51 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Joossens, P. Van der Veken, A.M. Lambeir, K. Augustyns, A. Haemers, J. Med. Chem. 47, 2411 (2004)CrossRefGoogle Scholar
  23. 23.
    P.G. Williams, W.Y. Yoshida, R.E. Moore, V.J. Paul, J. Nat. Prod. 65, 29 (2002)CrossRefGoogle Scholar
  24. 24.
    G.A. Rogers, S.M. Parsons, D.C. Anderson, L.M. Nilsson, B.A. Bahr, W.D. Kornreich, R. Kaufman, R.S. Jacobs, B. Kirtman, J. Med. Chem. 32, 1217 (1989)CrossRefGoogle Scholar
  25. 25.
    N. Bartke, Y.A. Hannun, J. Lipid Res. 50, S91–S96 (2009)CrossRefGoogle Scholar
  26. 26.
    M.E. Falagas, A.P. Grammatikos, A. Michalopoulos, Expert Rev. Anti Infect. Ther. 6(5), 593 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Izawa, T. Onishi, Chem. Rev. 106, 2811 (2006)CrossRefGoogle Scholar
  28. 28.
    R. Torregrosa, I.M. Pastor, M. Yus, Tetrahedron 63, 469 (2007)CrossRefGoogle Scholar
  29. 29.
    R.I. Kureshy, I. Ahmad, K. Pathak, N.H. Khan, S.H.R. Abdi, H.C. Bajaj, E. Suresh, Res. Lett. Org. Chem. 1 (2009)Google Scholar
  30. 30.
    A. Robin, F. Brown, N. Bahamontes-Rosa, B. Wu, E. Beitz, J.F.J. Kun, S.L. Flitsch, J. Med. Chem. 50, 4243 (2007)CrossRefGoogle Scholar
  31. 31.
    E. Ertürk, A.S. Demir, Arkivoc 2008, 160–171 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Augé, F. Leroy, Tetrahedron Lett. 37, 7715 (1996)CrossRefGoogle Scholar
  33. 33.
    A.V. Narsaiah, S.B. Wadavrao, A.R. Reddy, J.S. Yadav, Synthesis 3, 485 (2011)CrossRefGoogle Scholar
  34. 34.
    A.A. Jafari, M. Gholi, Synth. Commun. 41, 594 (2011)CrossRefGoogle Scholar
  35. 35.
    B. Pujala, S. Rana, A.K. Chakraborti, J. Org. Chem. 76, 8768 (2011)CrossRefGoogle Scholar
  36. 36.
    M.J. Bhanushali, N.S. Nandurkar, M.D. Bhor, B.M. Bhanage, Tetrahedron Lett. 49, 3672 (2008)CrossRefGoogle Scholar
  37. 37.
    J.S. Yadav, A.R. Reddy, A.V. Narsaiah, B.V.S. Reddy, J. Mol. Catal. A Chem. 261, 207 (2007)CrossRefGoogle Scholar
  38. 38.
    A.K. Chakraborti, S. Rudrawar, A. Kondaskar, Org. Biomol. Chem. 2, 1277 (2004)CrossRefGoogle Scholar
  39. 39.
    B. Sreedhar, P. Radhika, B. Neelima, N. Hebalkar, J. Mol. Catal. A Chem. 272, 159 (2007)CrossRefGoogle Scholar
  40. 40.
    L. Saikia, J.K. Satyarthi, D. Srinivas, P. Ratnasamy, J. Catal. 252, 148 (2007)CrossRefGoogle Scholar
  41. 41.
    T. Ollevier, G. Lavie-Compin, Tetrahedron Lett. 43, 7891 (2002)CrossRefGoogle Scholar
  42. 42.
    A. Kumar, D. Srinivas, J. Catal. 293, 126 (2012)CrossRefGoogle Scholar
  43. 43.
    M.M. Heravi, B. Baghernejad, Catal. Lett. 130, 547 (2009)CrossRefGoogle Scholar
  44. 44.
    L.J. Meng, B.V.D. Vijaykumar, H. Zuo, Z.B. Li, G. Dupati, K. Jang, D.S. Shin, Tetrahedron Asymmetry 23, 1029 (2012)CrossRefGoogle Scholar
  45. 45.
    Y. Harrak, M.D. Pujol, Tetrahedron Lett. 43, 819 (2002)CrossRefGoogle Scholar
  46. 46.
    S. Ramesh Kumar, P. Leelavathim, J. Mol. Catal. A Chem. 266, 65 (2007)CrossRefGoogle Scholar
  47. 47.
    M. Maheswara, K.S.V. Krishna Rao, J.Y. Do, Tetrahedron Lett. 49, 1795 (2008)CrossRefGoogle Scholar
  48. 48.
    R.I. Kureshy, S. Agrawal, M. Kumar, N.H. Khan, S.H.R. Abdi, H.C. Bajaj, Catal. Lett. 134, 318 (2010)CrossRefGoogle Scholar
  49. 49.
    R.I. Kureshy, S. Singh, N.H. Khan, S.H.R. Abdi, E. Suresh, R.V. Jasra, J. Mol. Catal. A Chem. 264, 162 (2007)CrossRefGoogle Scholar
  50. 50.
    M.W.C. Robinson, A.M. Davies, I. Mabbett, T.E. Davies, D.C. Apperley, S.H. Taylor, A.E. Graham, J. Mol. Catal. A Chem. 329, 57 (2010)CrossRefGoogle Scholar
  51. 51.
    R. Chakravarti, H. Oveisi, P. Kalita, R.R. Pal, S.B. Halligudi, M.L. Kantam, A. Vinu, Microporous Mesoporous Mater. 123, 338 (2009)CrossRefGoogle Scholar
  52. 52.
    M.W.C. Robinson, D.A. Timms, S.M. Williams, A.E. Graham, Tetrahedron Lett. 48, 6249 (2007)CrossRefGoogle Scholar
  53. 53.
    A.K. Chakraborti, A. Kondaskar, S. Rudrawar, Tetrahedron 60, 9085 (2004)CrossRefGoogle Scholar
  54. 54.
    B.M. Reddy, M.K. Patil, B.T. Reddy, S.E. Park, Catal. Commun. 9, 950 (2008)CrossRefGoogle Scholar
  55. 55.
    C.X.H. Reyes, D.A. Beltrán, L.L. Romero, E.G. Zamora, R. Gaviño, J. Cárdenas, J.A.M. Serna, G.E.N. Silva, Molecules 17, 3359 (2012)CrossRefGoogle Scholar
  56. 56.
    X. Chen, H. Wu, S. Wang, S. Huang, Synth. Commun. 42, 2440 (2012)CrossRefGoogle Scholar
  57. 57.
    N. Azizi, M.R. Saidi, Tetrahedron 63, 888 (2007)CrossRefGoogle Scholar
  58. 58.
    N. Aramesh, B. Yadollahi, V. Mirkhani, Inorg. Chem. Commun. 28, 37 (2013)CrossRefGoogle Scholar
  59. 59.
    M. Vijender, P. Kishore, P. Narender, B. Satyanarayana, J. Mol. Catal. A: Chem. 266, 290 (2007)CrossRefGoogle Scholar
  60. 60.
    S.P. Pathare, K.G. Akamanchi, Tetrahedron Lett. 54, 6455 (2013)CrossRefGoogle Scholar
  61. 61.
    A.K. Shaha, K.J. Prathap, M. Kumar, S.H.R. Abdia, R.I. Kureshya, N.H. Khan, H.C. Bajaja, Appl. Catal. A General 469, 442 (2014)CrossRefGoogle Scholar
  62. 62.
    M.W. Barlett, S.D. Ross, J. Am. Chem. Soc. 70, 926 (1948)CrossRefGoogle Scholar
  63. 63.
    R. Levine, W.C. Fernelius, Chem. Rev. 54, 449 (1954)CrossRefGoogle Scholar
  64. 64.
    R. Juza, Angew. Chem. 76, 290 (1964)CrossRefGoogle Scholar
  65. 65.
    M.F. Lappert, P.P. Power, A.R. Sanger, R.C. Srivastava, Metal and Metalloid Amides, 1st edn. (Wiley, Baffins Lane, 1980)Google Scholar
  66. 66.
    H. Jacobs, D. Schmidt, High Pressure Ammonolysis in Solid-State Chemistry (North-Holland, 1982), p. 583Google Scholar
  67. 67.
    H.J. Bestmann, O. Vostrowsky, Topics in Current Chemistry, vol. 109 (Springer, Berlin, 1983), pp. 85–163Google Scholar
  68. 68.
    R.T. Morrison, R.N. Boyd, Organic Chemistry, 6th edn. (Prentice-Hall, Inc., Englewood Cliffs, 1992)Google Scholar
  69. 69.
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Linacre House, Jordan Hill, 1997)Google Scholar
  70. 70.
    M.B. Smith, J. March, March’s Advanced Organic Chemistry, 6th edn. (Wiley, Hoboken, 2007)Google Scholar
  71. 71.
    M. Nakamura, X.Q. Wang, M. Isaka, S. Yamago, E. Nakamura, Org. Synth. 80, 144 (2003)CrossRefGoogle Scholar
  72. 72.
    L.Y. Gurskaya, G.A. Selivanova, V.D. Shteingarts, J. Fluorine Chem. 136, 32 (2012)CrossRefGoogle Scholar
  73. 73.
    Q. Guo, C. Yi, L. Zhu, Q. Yang, Y. Xie, Polymer 46, 3185 (2005)CrossRefGoogle Scholar
  74. 74.
    Y.C. Lin, S.C. Chen, C.E. Chen, P.M. Yang, S.R. Jhang, Fuel 135, 435 (2014)CrossRefGoogle Scholar
  75. 75.
    R.A. Sheldon, Green Chem. 9, 1273 (2007)CrossRefGoogle Scholar
  76. 76.
    X.P. Gu, I. Ikeda, M. Okahara, Synthesis 6/7, 649 (1985)CrossRefGoogle Scholar
  77. 77.
    H. Zoghlami, M. Romdhani-Younes, M.M. Chaabouni, A. Baklouti, Tetrahedron Lett. 52, 881 (2011)CrossRefGoogle Scholar
  78. 78.
    N. Mekni, A. Baklouti, Phosphorus. Sulfur Silicon 182, 2579 (2007)CrossRefGoogle Scholar
  79. 79.
    N.H. Mekni, Int. J. Chem. 9, 72 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Saad Ghrab
    • 1
  • Lotfi Aroua
    • 1
    • 2
  • Nejib Mekni
    • 1
    • 3
  • Mohamed Beji
    • 1
    • 4
  1. 1.LABCOSEM, Laboratory of Organic Structural Chemistry and Macromolecules, Department of Chemistry, Faculty of SciencesTunis-El Manar UniversityTunisTunisia
  2. 2.Department of Chemistry, College of SciencesQuassim UniversityBuraidahSaudi Arabia
  3. 3.Chemistry Department, Faculty of Science Al Madinah Al MounaouaraTaibah UniversityMadinahSaudi Arabia
  4. 4.Preparatory Institute for Engineering Studies of TunisMontflury, TunisTunisia

Personalised recommendations