Advertisement

A facile strategy to synthesize Pd/TiO2 nanotube arrays with high visible light photocatalytic performance

  • Lifeng Cui
  • Tingting Pu
  • Zhangfeng Shen
  • Shasha Li
  • Shifei Kang
  • Qineng XiaEmail author
  • Yangang WangEmail author
  • Xi Li
Article
  • 18 Downloads

Abstract

Novel Pd/TiO2 nanotube arrays (Pd/TNTAs) were fabricated by introducing Pd nanoparticles onto TNTAs via a facile deposition–reduction method. Pd nanoparticles can uniformly distribute over the inner and outer surfaces of TiO2 nanotubes by controlling the Pd loading. The hybrid prepared by two deposition–reduction cycles (Pd/TNTAs-2) showed the best visible light absorption and the highest transient photocurrent density compared with the pure TNTAs and other Pd/TNTAs. The Pd/TNTAs-2 sample also showed the best photocatalytic activity and recyclability toward the degradation of Rhodamine B (RhB). As much as 99.7% of RhB could be removed over the Pd/TNTAs-2 film within 2 h under visible light irradiation, which is about three times higher than that over P25 films. The enhancement is attributed to the surface plasmon resonance of Pd nanoparticles and the effective interaction between Pd nanoparticles and TiO2 nanotubes, which improves the charge transfer and reduces the recombination rate of the photogenerated electron–hole pairs.

Keywords

TiO2 nanotube arrays Pd nanoparticle Rhodamine B Photocatalytic degradation Visible light 

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51528202 and 51671136), International Technological Collaboration Project of Shanghai (Grant No. 17520710300) and Technology Development Project of Jiaxing University.

References

  1. 1.
    C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  2. 2.
    C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Chem. Eng. J. 306, 1116 (2016)CrossRefGoogle Scholar
  3. 3.
    P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.-H. Kim, T. Akter, S. Kalagara, Environ. Int. 91, 94 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125, 331 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Yan, H. Yang, J. Alloys. Compd. 509, L26 (2011)CrossRefGoogle Scholar
  8. 8.
    N. Qin, J. Xiong, R. Liang, Y. Liu, S. Zhang, Y. Li, Z. Li, L. Wu, Appl. Catal. B Environ. 202, 374 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, Adv. Mater. 25, 267 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Yin, X. Wang, L. Wang, Q. Nie, Y. Zhang, Q. Yuan, W. Wu, J. Alloys. Compd. 657, 44 (2016)CrossRefGoogle Scholar
  11. 11.
    M.-Z. Ge, C.-Y. Cao, J.-Y. Huang, S.-H. Li, S.-N. Zhang, S. Deng, Q.-S. Li, K.-Q. Zhang, Y.-K. Lai, Nanotechnol. Rev. 5, 75 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Eskandarloo, M. Hashempour, A. Vicenzo, S. Franz, A. Badiei, M.A. Behnajady, M. Bestetti, Appl. Catal. B Environ. 185, 119 (2016)CrossRefGoogle Scholar
  13. 13.
    M.M. Momeni, Y. Ghayeb, M. Mahvari, Appl. Phys. A Mater. 124(9), 586 (2018)CrossRefGoogle Scholar
  14. 14.
    B. Sun, N. Lu, Y. Su, H. Yu, X. Meng, Z. Gao, Appl. Surf. Sci. 394, 479 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Luo, D. Li, Y. Yang, H. Liu, J. Chen, H. Wang, J. Alloys. Compd. 661, 380 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, L. Wang, C. Liu, Y. Ding, S. Zhang, Y. Zeng, Y. Liu, S. Luo, J. Hazard. Mater. 313, 244 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527 (2016)CrossRefGoogle Scholar
  18. 18.
    M.M. Momeni, Y. Ghayeb, F. Ezati, J. Colloid Interface Sci. 514, 70 (2018)CrossRefGoogle Scholar
  19. 19.
    M.M. Momeni, Appl. Surf. Sci. 357, 160 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Liu, Z. Liu, J. Lu, X. Wu, B. Xu, W. Chu, Appl. Surf. Sci. 288, 513 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Xin, Z. Li, Z. Zhang, Chem. Commun. 51, 15498 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, J. Chen, C. Zhou, L. Zhou, Y. Kong, H. Long, S. Zhong, Electrochim. Acta 115, 269 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Chen, Y. Tang, S. Luo, C. Liu, Y. Li, J. Alloys. Compd. 578, 242 (2013)CrossRefGoogle Scholar
  24. 24.
    T. Sharifi, Y. Ghayeb, T. Mohammadi, M.M. Momeni, Dalton Trans. 47, 11593 (2018)CrossRefGoogle Scholar
  25. 25.
    M.M. Momeni, Y. Ghayeb, Appl. Phys. A Mater. 122(6), 620 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Yilmaz, A.M. Lacerda, I. Larrosa, S. Dunn, Electrochim. Acta 231, 641 (2017)CrossRefGoogle Scholar
  27. 27.
    S.K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra, Langmuir 24, 11276 (2008)CrossRefGoogle Scholar
  28. 28.
    D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, L. Torrente-Murciano, J.M. Friedrich, F.C. Walsh, Top. Catal. 39, 151 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 134, 15720 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Honciuc, M. Laurin, S. Albu, M. Sobota, P. Schmuki, J. Libuda, Langmuir 26, 14014 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Gong, Y. Lai, C. Lin, Electrochim. Acta 55, 4776 (2010)CrossRefGoogle Scholar
  32. 32.
    S.-Y. Chang, S.-F. Chen, Y.-C. Huang, J. Phys. Chem. C 115, 1600 (2011)CrossRefGoogle Scholar
  33. 33.
    K. Lalitha, J.K. Reddy, M.V.P. Sharma, V.D. Kumari, M. Subrahmanyam, Int. J. Hydrogen Energy 35, 3991 (2010)CrossRefGoogle Scholar
  34. 34.
    Q. Yuan, F. Ye, T. Xue, Y. Guan, Appl. Catal. A Gen. 507, 26 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Plasmonics 8, 501 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Thabit, H. Liu, J. Zhang, B. Wang, J. Environ. Sci. 60, 53 (2017)CrossRefGoogle Scholar
  37. 37.
    F.-X. Xiao, ACS Appl. Mater. Interfaces. 4, 7054 (2012)Google Scholar
  38. 38.
    X. Zhao, H. Liu, J. Qu, Appl. Surf. Sci. 257, 4621 (2011)CrossRefGoogle Scholar
  39. 39.
    C. Liu, C. Cao, X. Luo, S. Luo, J. Hazard. Mater. 285, 319 (2015)CrossRefGoogle Scholar
  40. 40.
    A.A. Ismail, D.W. Bahnemann, L. Robben, V. Yarovyi, M. Wark, Chem. Mater. 22, 108 (2010)CrossRefGoogle Scholar
  41. 41.
    L.-R. Hou, C.-Z. Yuan, Y. Peng, J. Hazard. Mater. 139, 310 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental Science and TechnologyUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.School of Biological and Chemical EngineeringJiaxing UniversityJiaxingPeople’s Republic of China

Personalised recommendations