Advertisement

Spectroscopic (FT-IR, FT-Raman, UV–Vis), quantum chemical calculation and molecular docking evaluation of liquiritigenin: an influenza A (H1N1) neuraminidase inhibitor

  • B. Sathya
  • M. Prasath
Article
  • 7 Downloads

Abstract

The vibrational spectroscopic analysis of anti-influenza agent liquiritigenin (LGN) was performed using Fourier-transform infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra. The experimental values of the LGN molecule was compared with vibrational frequencies obtained from the quantum chemical calculations using density functional theory (DFT) method employing 6-31G, 6-31G(d,p) and 6-311G(d,p) basis sets with scaled frequency, and these values are in good agreement with the computational one. The time-dependent density functional theory method was employed to compute the HOMO–LUMO energy gap of the LGN molecule and their differences were compared with transitions of UV-absorption spectra. The reactivity and selectivity of LGN were analyzed using parameters such as molecular electrostatic potential, global reactivity descriptors, Fukui functions and natural bond orbitals. The molecular orbital contributions were considered using the total, partial and overlap population density of states. The suitability of a drug candidate for human intake can be evaluated by absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The drug likeness and toxicity properties of LGN were confirmed with Lipinski’s rule of five and ADMET properties, respectively. The LGN molecule exhibits good bioactive score and less toxicity. A molecular docking analysis of LGN was carried out with influenza neuraminidase enzyme, and these results show that LGN has lowest binding affinity with inhibition constant when present in the active site.

Keywords

DFT FT-IR FT-Raman HOMO–LUMO Fukui function Molecular docking 

Notes

References

  1. 1.
    Jin Woo Park and Won Ho Jo, Eur. J. Med. Chem. 45, 536 (2010)CrossRefGoogle Scholar
  2. 2.
    J.R. Schnell, J.J. Chou, Nature 451, 591 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Lou, X. Yang, Z. Rao, W. Qi, J. Li, H. Wang, Y. Li, J. Li, Z. Wang, X. Hu, P. Liu, X. Hong, Eur. J. Med. Chem. 83, 466 (2014)CrossRefGoogle Scholar
  4. 4.
    B.J. Smith, J.L. McKimm-Breshkin, M. McDonald, R.T. Fernley, J.N. Varghese, P.M. Colman, J. Med. Chem. 45, 2207 (2002)CrossRefGoogle Scholar
  5. 5.
    Y. Li, A. Silamkoti, G. Kolavi, L. Moua, S. Gulati, G.M. Air, W.J. Brouillette, Bioorg. Med. Chem. 20, 4582 (2012)CrossRefGoogle Scholar
  6. 6.
    U. Grienke, M. Schmidtke, S. von Grafenstein, J. Kirchmair, K.R. Liedl, J.M. Rollinger, Nat. Pro. Rep. 29, 11 (2011)CrossRefGoogle Scholar
  7. 7.
    U. Grienke, M. Schmidtke, S. von Grafenstein, J. Kirchmair, K.R. Liedl, J.M. Rollinger, Nat. Pro. Rep. 29, 1 (2012)CrossRefGoogle Scholar
  8. 8.
    J.E. Mersereau, N. Levy, R.E. Staub, S. Baggett, T. Zogric, S. Chow, W.A. Ricke, M. Tagliaferri, I. Cohen, L.F. Bjeldanes, D.C. Leitman, Mol. Cell. Endocrinol. 283, 49 (2008)CrossRefGoogle Scholar
  9. 9.
    D. Ye, W.-J. Shin, N. Li, W. Tang, E. Feng, J. Li, P.-L. He, J.-P. Zuo, H. Kim, K.-Y. Nam, W. Zhu, B.-L. Seong, K.T. No, H. Jiang, H. Liu, Eur. J. Med. Chem. 54, 764 (2012)CrossRefGoogle Scholar
  10. 10.
    X.Y. Meng, H.X. Zhang, M. Mezei, M. Curr, Comput. Aided. Drug Des. 7, 146 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Orio, D.A. Pantazis, F. Neese, Photosynth Res. 102, 443 (2009)CrossRefGoogle Scholar
  12. 12.
    E. Kerns, D. Li, Drug-Like Properties: Concepts, Structure Design, and Methods: From ADME to Toxicity Optimization, 1st edn. (Elsevier, Amsterdam, 2008), p. 514Google Scholar
  13. 13.
    C. Kramer, A. Ting, H. Zheng, J. Hert, T. Schindler, M. Stahl, G. Robb, J.J. Crawford, J. Blaney, S. Montague, A.G. Leach, A.G. Dossetter, E.J. Griffen, J. Med. Chem. 61, 3277 (2018)CrossRefGoogle Scholar
  14. 14.
    J.A. Rocha, N.C.S. Rego, B.T.S. Carvalho, F.I. Silva, J.A. Sousa, R.M. Ramos et al., PLoS ONE 13, e0198476 (2018)CrossRefGoogle Scholar
  15. 15.
    K. Venkata Prasad, S. Muthu, C. Santhamma, J. Mol. Str. 1128, 685 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Sevvanthi, S. Muthu, M. Raja, J. Mol. Str. 1173, 251 (2018)CrossRefGoogle Scholar
  17. 17.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.A. Cheeseman, G. Calmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, I.A.F. Hratchian, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, CT, 2010)Google Scholar
  18. 18.
    E. Frisch, H.P. Hratchian, R.D. Dennington II et al., Gaussview, Version 5.0.8, 235 (Gaussian Inc., Wallingford, CT, 2009)Google Scholar
  19. 19.
    M.H. Jamróz, Vibrational Energy Distribution Analysis (VEDA) 4, Warsaw. (2004)Google Scholar
  20. 20.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  21. 21.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)CrossRefGoogle Scholar
  22. 22.
    G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30, 2785 (2009)CrossRefGoogle Scholar
  23. 23.
    The PyMOL Molecular Graphics System, Version 1.8 Schrodinger, LLCGoogle Scholar
  24. 24.
    R.A. Laskowski, M.B. Swindells, J. Chem. Inf. Model. 51(10), 2778 (2011)CrossRefGoogle Scholar
  25. 25.
    E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, J. Comput. Chem. 25(13), 1605 (2004)CrossRefGoogle Scholar
  26. 26.
    Dassault Syst_emes BIOVIA, Discovery Studio, 2016. DS2016Client32, SanDiego: Dassault Syst_emes, (2016)Google Scholar
  27. 27.
    J.K. Labanowski, J.W. Andzelm, Density Functional Methods in Chemistry (Springer, New York, 1991)CrossRefGoogle Scholar
  28. 28.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  29. 29.
    V.S. Sambyal, K.N. Goswami, Cryst. Res. Technol. 30, 629 (1995)CrossRefGoogle Scholar
  30. 30.
    J.P. Jasinski, R.J. Butcher, B. Narayana, M.T. Swamy, H.S. Yathirajan, Acta Cryst. A64, 112 (2008)Google Scholar
  31. 31.
    S. Muthu, M. Prasath, Spectrochimica Acta A Mol. Biomol. Spectro. 115, 789 (2013)CrossRefGoogle Scholar
  32. 32.
    R. Shahidha, A.A. Al-Saadi, S. Muthu, Spectrochimica Acta A Mol. Biomol. Spectro. 134, 127 (2015)CrossRefGoogle Scholar
  33. 33.
    NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 19, April 2018, Editor: Russell D. Johnson IIIGoogle Scholar
  34. 34.
    B. Fathimarizwana, J.C. Prasana, C.S. Abraham, S. Muthu, J. Mol. Struct. 1164, 447 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Choperena, P. Painter, Vib. Spectrosc. 51, 110 (2009)CrossRefGoogle Scholar
  36. 36.
    N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (Wiley, New York, 1994)Google Scholar
  37. 37.
    G. Varsany, Vibrational Spectra of Benzene Derivatives (Academic Press, New York, 1969)Google Scholar
  38. 38.
    M. Prasath, M. Govindammal, B. Sathya, J. Mol. Struct. 1146, 292 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Snehalatha, C. Ravikumar, I.H. Joe, V.S. Jayakumar, J. Raman Spectrosc. 40, 1121 (2009)CrossRefGoogle Scholar
  40. 40.
    E.A. Alodeani, M. Arshad, M.A. Izhari, Asian Pac. J. Trop. Biomed. 5, 676 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Xavier, S. Periandy, K. Carthigayan, S. Sebastian, J. Mol. Struct. 1125, 204 (2016)CrossRefGoogle Scholar
  42. 42.
    T. Kavitha, G. Velraj, J. Theor. Comput. Chem. 15, 1650039-1 (2016)CrossRefGoogle Scholar
  43. 43.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)CrossRefGoogle Scholar
  44. 44.
    T. Kavitha, G. Velraj, J. Mol. Struct. 1141, 335 (2017)CrossRefGoogle Scholar
  45. 45.
    T. Kavitha, G. Velraj, J. Mol. Struct. 1155, 819 (2018)CrossRefGoogle Scholar
  46. 46.
    R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)CrossRefGoogle Scholar
  47. 47.
    R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)CrossRefGoogle Scholar
  48. 48.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)CrossRefGoogle Scholar
  49. 49.
    R.S. Mulliken, J. Chem. Phys. 2, 782–794 (1934)CrossRefGoogle Scholar
  50. 50.
    E.C. Housecroft, G.S. Alan, Inorganic Chemistry, vol. 3 (Harlow, Pearson Education, 2008), p. 44Google Scholar
  51. 51.
    T. Hughbanks, R. Hoffmann, J. Am. Chem. Soc. 105, 3528 (1983)CrossRefGoogle Scholar
  52. 52.
    J.G. Małecki, Polyhedron 29, 1973 (2010)CrossRefGoogle Scholar
  53. 53.
    J.A. Pople, A.P. Scott, M.W. Wong, L. Radom, Isr. J. Chem. 33, 345 (1993)CrossRefGoogle Scholar
  54. 54.
    P. Geerlings, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)CrossRefGoogle Scholar
  55. 55.
    J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007)CrossRefGoogle Scholar
  56. 56.
    E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, NBO Version 3.1. (n.d.)Google Scholar
  57. 57.
    C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 46, 3 (2001)CrossRefGoogle Scholar
  58. 58.
    A.C. Mafud, M.P.N. Silva, G.B.L. Nunes, M.A.R. de Oliveira, L.F. Batista, T.I. Rubio, A.C. Mengarda, E.M. Lago, R.P. Xavier, S.J.C. Gutierrez, P.L.S. Pinto, A.A. da Silva Filho, Y.P. Mascarenhas, J. de Moraes, Toxicol In Vitro 50, 1 (2018)CrossRefGoogle Scholar
  59. 59.
    X.L. Ma, C. Chen, J. Yang, Acta Pharm. Sinic. 26, 500 (2005)CrossRefGoogle Scholar
  60. 60.
    S. Singh, J. Singh, Med. Res. Rev. 13, 569 (1993)CrossRefGoogle Scholar
  61. 61.
    Y.H. Zhao, J. Le, M.H. Abraham, A. Hersey, P.J. Eddershaw, C.N. Luscombe et al., J. Pharm. Sci. 90, 749 (2001)CrossRefGoogle Scholar
  62. 62.
    S. Yee, Pharm. Res. 14, 763 (1997)CrossRefGoogle Scholar
  63. 63.
    S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, H. Tokuda, Eur. J. Pharm. Sci. 10, 195 (2000)CrossRefGoogle Scholar
  64. 64.
    F.J. Azeredo, F.T. UchoÃa, T.D. Costa, Rev. Bras. Farm. 90, 321 (2009)Google Scholar
  65. 65.
    B.N. Ames, E.G. Gurney, J.A. Miller, H. Bartsch, Proc. Nat. Acad. Sci. 69, 3128 (1972)CrossRefGoogle Scholar
  66. 66.
    C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 23, 3 (2001)CrossRefGoogle Scholar
  67. 67.
    M.P. Postigo, R.V.C. Guido, G. Oliva, M.S. Castilho, I.R. Pitta, J.F.C. de Albuquerque et al., J. Chem. Inf. Model. 50, 1693 (2010)CrossRefGoogle Scholar
  68. 68.
    T.I. Oprea, J. Comput. Aid Mol. Des. 14, 251 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsPeriyar University PG Extension CentreDharmapuriIndia

Personalised recommendations